RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Classification of Mammogramsusing Support Vector Machine

      한글로보기

      https://www.riss.kr/link?id=A101889439

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In the present work, a computer aided classification system has been proposed for classification of mammogram images into normal, benign and cancer classes. The work has been carried out on thirty Digital Database for Screeningmammography(DDSM) cases ...

      In the present work, a computer aided classification system has been proposed for classification of mammogram images into normal, benign and cancer classes. The work has been carried out on thirty Digital Database for Screeningmammography(DDSM) cases consisting of 10 normal, 10 benign and 10 cancer images. The regions of interest (ROI) have been extracted from the right Medio Lateral Oblique (RMLO) part of the mammogram. We extracted 256×256 pixel size ROI from each case. Texture descriptors based on gray level co-occurrence method by varying the value of inter pixel distance ‘d’ from 1 to 8 have been used. The SVM classifier has been used for the classification task. The result of the study indicates that GLCM mean and range features computed at d=1 yield the maximum overall classification accuracy of 75% and 65 % respectively.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. Introduction
      • 2. Methodology
      • A. Experimental Workflow
      • 3. Results and Discusssion
      • Abstract
      • 1. Introduction
      • 2. Methodology
      • A. Experimental Workflow
      • 3. Results and Discusssion
      • 4. Conclusion
      • Reference
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼