<P>Miryang City has high seasonal variations in precipitation and small number of surface reservoirs. It uses much groundwater for living and irrigation purposes. This study delineates the characteristics and the controlling factors of groundwat...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107639638
2016
-
SCI,SCIE,SCOPUS
학술저널
-
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>Miryang City has high seasonal variations in precipitation and small number of surface reservoirs. It uses much groundwater for living and irrigation purposes. This study delineates the characteristics and the controlling factors of groundwat...
<P>Miryang City has high seasonal variations in precipitation and small number of surface reservoirs. It uses much groundwater for living and irrigation purposes. This study delineates the characteristics and the controlling factors of groundwater contamination using multivariate statistical analyses and kriging method. GIS spatial maps showed that groundwater contamination was occurred mainly in the central and southern areas and partly in the southwestern and northern areas. It may be attributed to the effect of residual saline water, irrigation, livestock wastes and municipal sewage. Ca-HCO3 water type was the most predominant in the groundwater of the study area. Ca-Cl-2, Na-Cl and Na-HCO3 water types were dominant in order, due to the influence of residual saline water and anthropogenic activity. Geostatistical techniques were applied to classify the groundwater samples and to identify the geochemical processes and sources controlling the groundwater geochemistry. The scatter diagrams of factor score versus topographic elevation and groundwater level represented that groundwater was influenced by saline water and NO3-N at <85 m of well elevation. The areas and degrees of groundwater contamination were understood from the spatial distribution maps of factor scores versus groundwater level. Chemical characteristics and contamination sources of groundwater were identified from cluster and factor analyses. Kriging method was useful for the production of distribution maps showing the degree and location of groundwater contamination. Thus, geostatistical techniques including factor analysis, cluster analysis and kriging method played very important roles in evaluating groundwater contamination and identifying contamination sources.</P>