The slaughter process for cattle will inevitably transfer some bacteria onto the carcasses. The goal of food safety programs is to minimize and effectively remove this contamination. This study was attempted by the Verif $EYE^{TM}$ machine-vision tech...
The slaughter process for cattle will inevitably transfer some bacteria onto the carcasses. The goal of food safety programs is to minimize and effectively remove this contamination. This study was attempted by the Verif $EYE^{TM}$ machine-vision technology that might be useful for reducing microbial indicator counts and could reduce the contamination chance of E coli O157:H7 and Salmonella spp on beef carcasses. For the evaluation of the effectiveness of the Verif $EYE^{TM}$ technology, 80 samples were examined by the inspection device over 15 days. On an examination of FDS-positive samples compared to negative controls from the same carcasses, aerobic plate counts were bigger than the negative control samples (5.26 vs 4.60 log). Enterobacteriaceae counts were greater on the positive samples than the corresponding negative control samples (2.07 vs 1.17log). There was a consistent correlation between samples detected by the Verif $EYE^{TM}$ system with detectable counts. For example, 100% of positive samples had detectable APC and 91.2% of positive samples had detectable TCC. Therefore, if areas detected as positive for contamination by the Verif $EYE^{TM}$ system were removed from the carcasses, significant sources of microbial contamination will be reduced for objective compliance with HACCP. This results suggest that the use of Verif $EYE^{TM}$ machine-vision technology might be useful for reducing microbial indicator counts (APC, TCC) and could help reduce the risk of presence of E coJi O157:H7 and Salmonella spp on Beef carcasses.