RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      교정사전과 신문기사 말뭉치를 이용한 한국어 철자 오류 교정 모델 = A Spelling Error Correction Model in Korean Using a Correction Dictionary and a Newspaper Corpus

      한글로보기

      https://www.riss.kr/link?id=A109539760

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      인터넷 및 모바일 환경의 빠른 발전과 함께 신조어나 줄임말과 같은 철자 오류들을 포함하는 텍스트들이 활발히 통용되고 있다. 이러한 철자 오류들은 텍스트의 가독성을 떨어뜨림으로써 자연어처리 응용들을 개발하는데 걸림돌이 된다. 이러한 문제를 해결하기 위해서 본 논문에서는 철자오류 교정사전과 신문기사 말뭉치를 이용한 철자 오류 교정 모델을 제안한다. 제안 모델은 구하기 쉬운 신문기사 말뭉치를 학습 말뭉치로 사용하기 때문에 데이터 구축비용이 크지 않다는 장점이 있다. 또한 교정사전 기반의 단순 매칭 방법을 사용하기 때문에 띄어쓰기 교정 시스템이나 형태소 분석기와 같은 별도의 외부 모듈이 필요 없다는 장점이 있다. 신문기사 말뭉치와 실제 휴대폰에서 수집한 문자 메시지 말뭉치를 이용한 실험 결과, 제안 모델은 다양한 평가 척도에서 비교적 높은 성능(오교정률 7.3%, F1-척도 97.3%, 위양성율 1.1%)을 보였다.
      번역하기

      인터넷 및 모바일 환경의 빠른 발전과 함께 신조어나 줄임말과 같은 철자 오류들을 포함하는 텍스트들이 활발히 통용되고 있다. 이러한 철자 오류들은 텍스트의 가독성을 떨어뜨림으로써 ...

      인터넷 및 모바일 환경의 빠른 발전과 함께 신조어나 줄임말과 같은 철자 오류들을 포함하는 텍스트들이 활발히 통용되고 있다. 이러한 철자 오류들은 텍스트의 가독성을 떨어뜨림으로써 자연어처리 응용들을 개발하는데 걸림돌이 된다. 이러한 문제를 해결하기 위해서 본 논문에서는 철자오류 교정사전과 신문기사 말뭉치를 이용한 철자 오류 교정 모델을 제안한다. 제안 모델은 구하기 쉬운 신문기사 말뭉치를 학습 말뭉치로 사용하기 때문에 데이터 구축비용이 크지 않다는 장점이 있다. 또한 교정사전 기반의 단순 매칭 방법을 사용하기 때문에 띄어쓰기 교정 시스템이나 형태소 분석기와 같은 별도의 외부 모듈이 필요 없다는 장점이 있다. 신문기사 말뭉치와 실제 휴대폰에서 수집한 문자 메시지 말뭉치를 이용한 실험 결과, 제안 모델은 다양한 평가 척도에서 비교적 높은 성능(오교정률 7.3%, F1-척도 97.3%, 위양성율 1.1%)을 보였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      With the rapid evolution of the Internet and mobile environments, text including spelling errors such as newly-coined words and abbreviated words are widely used. These spelling errors make it difficult to develop NLP (natural language processing) applications because they decrease the readability of texts. To resolve this problem, we propose a spelling error correction model using a spelling error correction dictionary and a newspaper corpus. The proposed model has the advantage that the cost of data construction are not high because it uses a newspaper corpus, which we can easily obtain, as a training corpus. In addition, the proposed model has an advantage that additional external modules such as a morphological analyzer and a word-spacing error correction system are not required because it uses a simple string matching method based on a correction dictionary. In the experiments with a newspaper corpus and a short message corpus collected from real mobile phones, the proposed model has been shown good performances (a miss-correction rate of 7.3%, a F1-measure of 97.3%, and a false positive rate of 1.1%) in the various evaluation measures.
      번역하기

      With the rapid evolution of the Internet and mobile environments, text including spelling errors such as newly-coined words and abbreviated words are widely used. These spelling errors make it difficult to develop NLP (natural language processing) app...

      With the rapid evolution of the Internet and mobile environments, text including spelling errors such as newly-coined words and abbreviated words are widely used. These spelling errors make it difficult to develop NLP (natural language processing) applications because they decrease the readability of texts. To resolve this problem, we propose a spelling error correction model using a spelling error correction dictionary and a newspaper corpus. The proposed model has the advantage that the cost of data construction are not high because it uses a newspaper corpus, which we can easily obtain, as a training corpus. In addition, the proposed model has an advantage that additional external modules such as a morphological analyzer and a word-spacing error correction system are not required because it uses a simple string matching method based on a correction dictionary. In the experiments with a newspaper corpus and a short message corpus collected from real mobile phones, the proposed model has been shown good performances (a miss-correction rate of 7.3%, a F1-measure of 97.3%, and a false positive rate of 1.1%) in the various evaluation measures.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼