Insect cuticle is an extracellular matrix formed primarily from two different biopolymers, chitin and protein. During each molt cycle, a new cuticle is deposited simultaneously with degradation of the old cuticle by molting fluid cuticle degrading-enz...
Insect cuticle is an extracellular matrix formed primarily from two different biopolymers, chitin and protein. During each molt cycle, a new cuticle is deposited simultaneously with degradation of the old cuticle by molting fluid cuticle degrading-enzymes, including epidermal chitinases (CHTs). Insect CHTs, belonging to family 18 glycosylhydrolase (GH18), have been classified into at least eleven subgroups based on phylogenetic analyses, and group I (CHT5) and group II (CHT10) epidermal CHTs present in molting fluid. In this study we report the physiological function of MaCHT5 and MaCHT10 in the Japanese pine sawyer, Monochamus alternatus. RNAi for either MaCHT5 or MaCHT10 resulted in larval-pupal and pupal-adult molting defects, in which the insects were unable to shed completely their old cuticle and died entrapped in their exuviae. Furthermore, TEM analysis revealed a failure of degradation of the old cuticle in both MaCHT5- and MaCHT10-deficient pharate adults. In the old pupal cuticle, the chitinous horizontal laminar and vertical pore canal essentially remained intact in the endocuticular layer. These results indicate that both CHTs are required for turnover of the chitinous old cuticle, which is critical for completion of insect molting. We also discuss the possible function of two spliced variants of MaCHT10, MaCHT10a and MaCHT10b.