RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE

      Efficient Analysis of CFRP Cutting Force and Chip Formation Based on Cutting Force Models Under Various Cutting Conditions

      한글로보기

      https://www.riss.kr/link?id=A108649305

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The cutting characteristics of unidirectional carbon fiber-reinforced plastic (CFRP) during zig-zag milling, which is the most used milling tool path in the industry, were analyzed. Cutting force and chip formation are the most useful indicators of cu...

      The cutting characteristics of unidirectional carbon fiber-reinforced plastic (CFRP) during zig-zag milling, which is the most used milling tool path in the industry, were analyzed. Cutting force and chip formation are the most useful indicators of cutting performance. Here, cutting force and chip formation were analyzed in up- and down-milling, then compared with those parameters in zig-zag milling. CFRP cutting force models for up- and down-milling were used for analysis of cutting force. Chip formations were predicted via simulations of fiber cutting angle. This simulation-based study overcame various experimental limitations regarding CFRP cutting force. The specific cutting forces of various fiber cutting angles were derived from cutting experiments involving unidirectional CFRP. The specific cutting forces decreased with increasing chip thickness. These results are similar to the size effect observed in metal machining. Cutting force analysis was performed with a focus on change in feed direction and rate of radial immersion. In zig-zag milling, the optimal feed direction rapidly changed at a radial immersion of 30%. At a radial immersion of 75%, the difference in cutting force related to the change in the feed direction was large. Type I (delamination-type) chip formation was dominant in the optimal feed direction because specific cutting force was lower in the Type I section than in regions of other chip formation types/

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼