RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      물리정보 DeepONet의 이해

      한글로보기

      https://www.riss.kr/link?id=A108976242

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Partial differential equations (PDEs) play a pivotal role in mathematical analysis and modeling of dynamic processes across various disciplines of science and engineering. Machine learning (ML) techniques have emerged as a promising new approach to so...

      Partial differential equations (PDEs) play a pivotal role in mathematical analysis and modeling of dynamic processes across various disciplines of science and engineering. Machine learning (ML) techniques have emerged as a promising new approach to solving PDEs. Among them, Physics-Informed Neural Networks (PINNs) have garnered significant attention in numerous scientific and engineering studies. PINNs employ a single deep neural network to assimilate observational data with PDEs across the entire space-time of a physical system, subsequently yielding rapid solutions. However, a PINN may entail intricate analyses or computations and can be cost-intensive, depending on initial or boundary conditions and other input parameters. To address the limitations of the PINN, especially concerning resolution for nonlinear problems, the Physical-Informed Deep Operator Network (DeepONet) is introduced in this paper. The Physics-Informed DeepONet is a deep learning framework crafted to discern solution operators for any given PDEs, even in scenarios lacking paired input/output training data. The proposed framework is able to predict solutions for various types of parameterized PDEs much faster than conventional PDE solvers. Several cases confirm that this approach is effective in establishing previously unexplored paradigms for modeling/simulating nonlinear and non-equilibrium processes in science and engineering.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼