RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      A novel volumetric criterion for optimal shape matching of surfaces for protein-protein docking

      한글로보기

      https://www.riss.kr/link?id=A105258339

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The problem of molecular docking is to predict whether two given molecules bind together to interact. A shape-based algorithm is proposed for predictive docking by noting that shape complementarity between their outer surfaces is necessary for two mol...

      The problem of molecular docking is to predict whether two given molecules bind together to interact. A shape-based algorithm is proposed for predictive docking by noting that shape complementarity between their outer surfaces is necessary for two molecules to bind. A methodology with five stages has been devel-oped to find the pose in which the shape complementarity is maximum. It involves surface generation, seg-mentation, parameterization, shape matching, and filtering and scoring. The most significant contribution of this paper is the novel scoring function called ‘Normalized Volume Mismatch’ which evaluates the matching between a pair of surface patches efficiently by measuring the gap or solid volume entrapped between two patches of a pair of proteins when they are placed one against the other at a contact point. After the evaluation, it is found that, with local shape complementarity as the only criterion, the algorithm is able to predict a conformation close to the exact one, in case of known docking conformations, and also rank the same among the top 40 solutions. This is remarkable considering the fact that many existing dock-ing methods fail to rank a near-native conformation among top 50 solutions. The shape-based approaches are used for the initial stage of docking to identify a small set of candidate solutions to be investigated fur-ther with exhaustive energy studies etc. The ability of capturing the correct conformation as highly ranked among top few candidate solutions is the most valuable facet of this new predictive docking algorithm

      더보기

      참고문헌 (Reference)

      1 Chen, R., "ZDOCK: An initial-stage protein-docking algorithm" 52 : 80-87, 2003

      2 Schneider, G., "Virtual screening and fast automated docking methods" 7 (7): 64-70, 2002

      3 Besl, P. J., "Three-dimensional object recognition" 17 (17): 75-145, 1985

      4 Connolly, M., "Shape complementarity at the Hemoglobin ${\alpha}$1${\beta}$1 Subunit Interface" 25 : 1229-1247, 1986

      5 Norel, R., "Shape complementarity at protein-protein interfaces" 34 (34): 933-940, 1994

      6 Voruganti, H. K., "Segmentation and parameterization of molecular surfaces for docking" 3 (3): 178-192, 2009

      7 Sanner, M., "Reduced surface: An efficient way to compute molecular surfaces" 38 (38): 305-320, 1996

      8 Ritchie, D. W., "Recent progress and future directions in protein-protein docking" 9 (9): 1-15, 2008

      9 Huang, Q.-X., "Reassembling fractured objects by geometric matching" 25 (25): 569-578, 2006

      10 Mitchell, J., "Rapid atomic density methods for molecular shape characterization" 19 (19): 325-330, 2001

      1 Chen, R., "ZDOCK: An initial-stage protein-docking algorithm" 52 : 80-87, 2003

      2 Schneider, G., "Virtual screening and fast automated docking methods" 7 (7): 64-70, 2002

      3 Besl, P. J., "Three-dimensional object recognition" 17 (17): 75-145, 1985

      4 Connolly, M., "Shape complementarity at the Hemoglobin ${\alpha}$1${\beta}$1 Subunit Interface" 25 : 1229-1247, 1986

      5 Norel, R., "Shape complementarity at protein-protein interfaces" 34 (34): 933-940, 1994

      6 Voruganti, H. K., "Segmentation and parameterization of molecular surfaces for docking" 3 (3): 178-192, 2009

      7 Sanner, M., "Reduced surface: An efficient way to compute molecular surfaces" 38 (38): 305-320, 1996

      8 Ritchie, D. W., "Recent progress and future directions in protein-protein docking" 9 (9): 1-15, 2008

      9 Huang, Q.-X., "Reassembling fractured objects by geometric matching" 25 (25): 569-578, 2006

      10 Mitchell, J., "Rapid atomic density methods for molecular shape characterization" 19 (19): 325-330, 2001

      11 Hwang, H., "Protein-protein docking benchmark version 4.0" 78 (78): 3111-3114, 2010

      12 Via, A., "Protein surface similarities: a survey of methods to describe and compare protein surfaces" 57 (57): 1970-1977, 2000

      13 Trosset, J., "Prodock: Software package for protein modeling and docking" 20 (20): 412-427, 1999

      14 Halperin, I., "Principles of docking: An overview of search algorithms and a guide to scoring functions" 47 : 409-443, 2002

      15 Sternberg, M., "Predictive docking of protein-protein and protein-DNA complexes" 8 (8): 250-256, 1998

      16 Smith, G., "Prediction of protein-protein interactions by docking methods" 12 (12): 28-35, 2002

      17 Lenhof, H., "Parallel protein puzzle: A new suite of protein docking tools" 97 : 182-191, 1997

      18 Li, X., "Pairwise geometric matching for large-scale object retrieval" 5153-5161, 2015

      19 Li, H., "Object matching with a locally affineinvariant constraint" IEEE 1641-1648, 2010

      20 Walls, P., "New algorithm to model protein-protein recognition based on surface complementarity. Applications to antibodyantigen docking" 228 (228): 277-297, 1992

      21 Connolly, M., "Molecular surfaces: A review, Network Science 14"

      22 Lin, S., "Molecular surface representations by sparse critical points" 18 (18): 94-101, 1994

      23 Katchalski-Katzir, E., "Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques" 89 (89): 2195-2199, 1992

      24 Jones, G., "Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation" 245 (245): 43-53, 1995

      25 Wolfson, H.J., "Model-based object recognition by geometric hashing" 526-536, 1990

      26 Vakser, I., "Main-chain complementarity in protein-protein recognition" 9 (9): 741-744, 1996

      27 Liu, M., "MCDOCK: A Monte Carlo simulation approach to the molecular docking problem" 13 (13): 435-451, 1999

      28 Kozakov, D., "How good is automated protein docking?" 81 (81): 2159-2166, 2013

      29 Lamdan, Y., "Geometric hashing: a general and efficient modelbased recognition scheme" 238-249, 1998

      30 Huang, S.-Y., "Exploring the potential of global protein-protein docking: an overview and critical assessment of current programs for automatic ab initio docking" 20 (20): 969-977, 2015

      31 Heifetz, A., "Electrostatics in proteinprotein docking" 11 (11): 571-587, 2002

      32 Duhovny, D., "Efficient unbound docking of rigid molecules" 185-200, 2002

      33 Chen, R., "Docking unbound proteins using shape complementarity, desolvation, and electrostatics" 47 (47): 281-294, 2002

      34 Jones, G., "Development and validation of a genetic algorithm for flexible docking" 267 (267): 727-748, 1997

      35 Vajda, S., "Convergence and combination of methods in protein-protein docking" 19 (19): 164-170, 2009

      36 Shentu, Z., "Context shapes: Efficient complementary shape matching for protein-protein docking" 70 (70): 1056-1073, 2008

      37 Elcock, A., "Computer simulation of protein-protein interactions" 105 (105): 1504-1518, 2001

      38 Wodak, S., "Computer analysis of protein-protein interaction" 124 (124): 323-342, 1978

      39 Kim, D., "Betadock: Shape-priority docking method based on beta-complex" 29 (29): 219-242, 2011

      40 Mendez, R., "Assessment of blind predictions of protein-protein interactions: Current status of docking methods" 52 (52): 51-67, 2003

      41 Zacharias, M., "Accounting for conformational changes during protein-protein docking" 20 (20): 180-186, 2010

      42 Fischer, D., "A geometry-based suite of moleculardocking processes" 248 (248): 459-477, 1995

      43 Kuntz, I., "A geometric approach to macromolecule-ligand interactions" 161 (161): 269-288, 1982

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2017-03-13 학술지명변경 한글명 : Journal of Computational Design and Engineering -> Journal of Computational Design and Engineering
      외국어명 : Journal of Computational Design and Engineering -> Journal of Computational Design and Engineering
      KCI등재
      2017-03-01 평가 SCOPUS 등재 (기타) KCI등재
      2016-06-13 학회명변경 한글명 : 한국CAD/CAM학회 -> 한국CDE학회
      영문명 : Society Of Cadcam Engineers -> Society for Computational Design and Engineering
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0 0 0
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0 0 0 0
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼