RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Forest structure and carbon dynamics of an intact lowland mixed dipterocarp forest in Brunei Darussalam

      한글로보기

      https://www.riss.kr/link?id=A107520352

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Tropical forests play a critical role in mitigating climate change because they account for large amount of terrestrial carbon storage and productivity. However, there are many uncertainties associated with the estimation of carbon dynamics. ...

      <P>Tropical forests play a critical role in mitigating climate change because they account for large amount of terrestrial carbon storage and productivity. However, there are many uncertainties associated with the estimation of carbon dynamics. We estimated forest structure and carbon dynamics along a slope (17.3A degrees-42.8A degrees) and to assess the relations between forest structures, carbon dynamics, and slopes in an intact lowland mixed dipterocarp forest, in Kuala Belalong, Brunei Darussalam. Living biomass, basal area, stand density, crown properties, and tree family composition were measured for forest structure. Growth rate, litter production, and litter decomposition rates were also measured for carbon dynamics. The crown form index and the crown position index were used to assess crown properties, which we categorized into five stages, from very poor to perfect. The living biomass, basal area and stand density were 261.5-940.7 Mg ha(-1), 43.6-63.6 m(2) ha(-1) and 6,675-8400 tree ha(-1), respectively. The average crown form and position index were 4, which means that the crown are mostly symmetrical and sufficiently exposed for photosynthesis. The mean biomass growth rate, litter production, litter decomposition rate were estimated as 11.9, 11.6 Mg ha(-1) a(-1), and 7.2 g a(-1), respectively. Biomass growth rate was significantly correlated with living biomass, basal area, and crown form. Crown form appeared to strongly influence living biomass, basal area and biomass growth rate in terms of light acquisition. However, basal area, stand density, crown properties, and biomass growth rate did not vary by slope or tree family composition. The results indicate that carbon accumulation by tree growth in an intact lowland mixed dipterocarp forest depends on crown properties. Absence of any effect of tree family composition on carbon accumulation suggests that the main driver of biomass accumulation in old-growth forests of Borneo is not species-specific characteristics of tree species.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼