RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Developments in Advanced Manufacturing Techniques: Impact Welding and Metamorphic Manufacturing.

      한글로보기

      https://www.riss.kr/link?id=T17036519

      • 저자
      • 발행사항

        Ann Arbor : ProQuest Dissertations & Theses, 2023

      • 학위수여대학

        The Ohio State University Materials Science and Engineering

      • 수여연도

        2023

      • 작성언어

        영어

      • 주제어
      • 학위

        Ph.D.

      • 페이지수

        259 p.

      • 지도교수/심사위원

        Advisor: Daehn, Glenn.

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The work in this dissertation is focused on the development of new manufacturing technologies at the early stage. Two concepts are developed in the category of Impact Welding and two in the category of Metamorphic Manufacturing. Under the Impact Weld...

      The work in this dissertation is focused on the development of new manufacturing technologies at the early stage. Two concepts are developed in the category of Impact Welding and two in the category of Metamorphic Manufacturing. Under the Impact Welding category two different welding processes are studied, the Vaporizing Foil Actuator Welding and the Augmented Laser Impact Welding processes. Both of these processes were demonstrated to produce impact welds between traditionally unweldable aircraft aluminum alloys which performed as well or better than comparable riveted joints without the need for the drilling of holes or removal of surface coatings. Additionally, basic engineering guidelines are established for the design of foils for the Vaporizing Foil Actuator Welding process and basic performance metrics are established for the Augmented Laser Impact Welding technique. Two new data analysis techniques were developed for the Augmented Laser Impact Welding process which were validated by the use of high-speed videography. Models of the impact conditions for both of these impact welding techniques were established. For the Augmented Laser Impact Welding process, a technique for accurately measuring the welding velocity during an impact event is developed and validated.Metamorphic Manufacturing refers to the agile use of deformation to create shapes and modify microstructure. In this area two concepts were developed where metallic components are transformed from one shape into a second more desirable and useful form. A device and process for bending medical fixation plates to match patient skeletal anatomy is developed. The method can make arbitrary controlled shapes and may save time in the operating room for reconstruction surgeries. The second concept is an approach for Robotic Blacksmithing, a process for incrementally transforming a malleable material into useful shapes by deformation. This concept was initially developed on a purpose-built desktop robotic system. Once successfully demonstrated at small scale, Robotic Blacksmithing was then used to produce an aluminum part which closely resembled the target geometry, albeit with some limitations. This Robotic Blacksmithing process may complement CNC machining and 3D printing as a common manufacturing technique.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼