Background: A pressure ulcer is common in soft tissue over the greater trochanter (GT) in side-lying position, and sustained tissue deformation induced by the prolonged external force is a primary cause, which can be discussed with soft tissues’ vis...
Background: A pressure ulcer is common in soft tissue over the greater trochanter (GT) in side-lying position, and sustained tissue deformation induced by the prolonged external force is a primary cause, which can be discussed with soft tissues’ viscoelastic properties (i.e., stress relaxation, creep response). Objects: Using an automated hand-held indentation device, we measured the viscoelastic properties of soft tissue over the hip area, in order to examine how the properties are affected by site with respect to the GT. Methods: Twenty participants (15 males and 5 females) who aged from 21 to 32 were participated. An automated hand-held indentation device was used to measure the stress relaxation time and creep response. Trials were acquired for three different locations with respect to the GT (i.e., right over the GT, 6 cm anterior or posterior to the GT). For each location, five trials were acquired and averaged for data analyses. Results: Soft tissues’ stress relaxation time and creep response were associated with site (F = 23.98, p < 0.005; F = 24.09, p < 0.005; respectively). The stress relaxation time was greatest at posterior gluteal region (19.22 ± 2.49 ms), and followed by anterior region (15.39 ± 2.47 ms) and right over the GT (14.40 ± 3.18 ms). Similarly, creep response was greatest at posterior gluteal region (1.16 ± 0.14), and followed by anterior region (0.95 ± 0.14) and right over the GT (0.89 ± 0.18). Conclusion: Our results showed that the stress relaxation and creep were greatest at the posterior gluteal region and least at right over the GT, indicating that the gluteal soft tissue is more protective to the prolonged external force, when compared to the trochanteric soft tissue. The results suggest that a risk of pressure ulcer over the GT may decrease with slightly posteriorly rotated side-lying position.