RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보 SCIE SCOPUS

      DNA-functionalized single-walled carbon nanotube-based sensor array for gas monitoring

      한글로보기

      https://www.riss.kr/link?id=A104824457

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Nine deoxyribonucleic acid (DNA) sequences were used to functionalize single-walled carbon nanotube (SWNT) sensors to detect the trace amount of methanol, acetone, and HCl in vapor. DNA 24 Ma (24 randomly arranged nitrogenous bases with one amine at e...

      Nine deoxyribonucleic acid (DNA) sequences were used to functionalize single-walled carbon nanotube (SWNT) sensors to detect the trace amount of methanol, acetone, and HCl in vapor. DNA 24 Ma (24 randomly arranged nitrogenous bases with one amine at each end of it) decorated SWNT sensor and DNA 24 A (only adenine (A) base with a length of 24) decorated SWNT sensor have demonstrated the largest sensing responses towards acetone and HCl, respectively. On the other hand, for the DNA GT decorated SWNT sensors with different sequence lengths, the optimum DNA sequence length for acetone and HCl sensing is 32 and 8, separately. The detection of methanol, acetone, and HCl have identified that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, and repeatability with an accuracy of more than 90%. Further, a sensor array composed of SWNT functionalized with various DNA sequences was utilized to identify acetone and HCl through pattern recognition. The sensor array is a combination of four different DNA functionalized SWNT sensors and two bare SWNT sensors (work as reference). This wireless sensing system has enabled real-time gas monitoring and air quality assurance for safety and security.

      더보기

      참고문헌 (Reference)

      1 Liu, Z., "siRNA delivery into human T cells and primary cells with carbon-nanotube transporters" 46 (46): 2023-2027, 2007

      2 Sahay, P. P., "Zinc oxide thin film gas sensor for detection of acetone" 40 (40): 4383-4385, 2005

      3 Pengfei, Q. F., "Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection" 3 (3): 347-351, 2003

      4 Zheng, M., "Structure-based carbon nanotube sorting by sequence-dependent DNA assembly" 302 (302): 1545-1548, 2003

      5 Roberts, M. E., "Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors" 3 (3): 3287-3293, 2009

      6 White, J., "Solid-state, dye-labeled DNA detects volatile compounds in the vapor phase" 6 (6): 30-36, 2008

      7 Martel, R., "Single-and multi-wall carbon nanotube field-effect transistors" 73 (73): 2447-2449, 1998

      8 Liu, Y., "Single chip Nanotube sensors for chemical agent monitoring" 79 : 5-798, 2011

      9 Zhao, X., "Simulation of adsorption of DNA on carbon nanotubes" 129 (129): 10438-10445, 2007

      10 Bradley, K., "Short-channel effects in contact-passivated nanotube chemical sensors" 83 (83): 3821-3823, 2003

      1 Liu, Z., "siRNA delivery into human T cells and primary cells with carbon-nanotube transporters" 46 (46): 2023-2027, 2007

      2 Sahay, P. P., "Zinc oxide thin film gas sensor for detection of acetone" 40 (40): 4383-4385, 2005

      3 Pengfei, Q. F., "Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection" 3 (3): 347-351, 2003

      4 Zheng, M., "Structure-based carbon nanotube sorting by sequence-dependent DNA assembly" 302 (302): 1545-1548, 2003

      5 Roberts, M. E., "Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors" 3 (3): 3287-3293, 2009

      6 White, J., "Solid-state, dye-labeled DNA detects volatile compounds in the vapor phase" 6 (6): 30-36, 2008

      7 Martel, R., "Single-and multi-wall carbon nanotube field-effect transistors" 73 (73): 2447-2449, 1998

      8 Liu, Y., "Single chip Nanotube sensors for chemical agent monitoring" 79 : 5-798, 2011

      9 Zhao, X., "Simulation of adsorption of DNA on carbon nanotubes" 129 (129): 10438-10445, 2007

      10 Bradley, K., "Short-channel effects in contact-passivated nanotube chemical sensors" 83 (83): 3821-3823, 2003

      11 Tans, S. J., "Room-temperature transistor based on a single carbon nanotube" 393 (393): 49-52, 1998

      12 Davis, J. J., "Protein electrochemistry at carbon nanotube electrodes" 440 (440): 279-282, 1997

      13 Johnson, R. R., "Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics" 8 (8): 69-75, 2008

      14 Salgado, G. G., "Porous silicon organic vapor sensor" 29 (29): 51-55, 2006

      15 Franklin, N. R., "Patterned growth of single-walled carbon nanotubes on full 4-inch wafers" 79 (79): 4571-4573, 2001

      16 Aravind, S. S. J., "Noble metal dispersed multiwalled carbon nanotubes immobilized ss-DNA for selective detection of dopamine" 155 (155): 679-686, 2011

      17 Novak, J. P., "Nerve agent detection using networks of single-walled carbon nanotubes" 83 (83): 4026-4028, 2003

      18 Kong, J., "Nanotube molecular wires as chemical sensors" 287 (287): 622-625, 2000

      19 Thompson, S. E., "Moore's law : the future of Si microelectronics" 9 (9): 20-25, 2006

      20 Bekyarova, E., "Mechanism of ammonia detection by chemically functionalized single-walled carbon nanotubes : in situ electrical and optical study of gas analyte detection" 129 (129): 10700-10706, 2007

      21 Frederick, L. J., "Investigation and control of occupational hazards associated with the use of spirit duplicators" 45 (45): 51-55, 1984

      22 Godish, T., "Indoor air pollution control" Chelsea, Mich 1989

      23 Liu, Y., "In the effect of sequence length on DNA decorated CNT gas sensors, Solid-State Sensors" 2011

      24 Britto, P. J., "Improved charge transfer at carbon nanotube electrodes" 11 (11): 154-157, 1999

      25 Izadi-Najafabadi, A., "Impact of cell-voltage on energy and power performance of supercapacitors with single-walled carbon nanotube electrodes" 12 (12): 1678-1681, 2010

      26 Jeng, E. S., "Hybridization kinetics and thermodynamics of DNA adsorbed to individually dispersed single-walled carbon nanotubes" 3 (3): 1602-1609, 2007

      27 Khamis, S. M., "Homo-DNA functionalized carbon nanotube chemical sensors" 71 (71): 476-479, 2010

      28 Iijima, S., "Helical microtubules of graphitic carbon" 354 (354): 56-58, 1991

      29 Wen, Z., "Gas-sensing properties of SnO2-TiO2-based sensor for volatile organic compound gas and its sensing mechanism" 405 (405): 1345-1348, 2010

      30 Prato, M., "Functionalized carbon nanotubes in drug design and discovery" 41 (41): 60-68, 2008

      31 Kong, J., "Functionalized carbon nanotubes for molecular hydrogen sensors" 13 (13): 1384-1386, 2001

      32 Zhang, Y. B., "Functionalized carbon nanotubes for detecting viral proteins" 7 (7): 3086-3091, 2007

      33 Choi, W. B., "Fully sealed, high-brightness carbon-nanotube field-emission display" 75 (75): 3129-3131, 1999

      34 Collins, P. G., "Extreme oxygen sensitivity of electronic properties of carbon nanotubes" 287 (287): 1801-1804, 2000

      35 Besteman, K., "Enzyme-coated carbon nanotubes as single-molecule biosensors" 3 (3): 727-730, 2003

      36 Park, J. Y., "Electron-phonon scattering in metallic single-walled carbon nanotubes" 4 (4): 517-520, 2004

      37 Pohl, H. A., "Dielectrophoresis : the behavior of neutral matter in nonuniform electric fields" Cambridge University Press 1978

      38 Mahar, B., "Development of carbon nanotube-based sensors-a review" 7 (7): 266-284, 2007

      39 Chen, C. L., "DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry" 21 (21): 2010

      40 Staii, C., "DNA-decorated carbon nanotubes for chemical sensing" 5 (5): 1774-1778, 2005

      41 Zheng, M., "DNA-assisted dispersion and separation of carbon nanotubes" 2 (2): 338-342, 2003

      42 Johnson, A. T. C., "DNA-Coated Nanosensors for Breath Analysis" 10 (10): 159-166, 2010

      43 Meng, S., "DNA nucleoside interaction and identification with carbon nanotubes" 7 (7): 45-50, 2007

      44 Wong, S. S., "Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology" 394 (394): 52-55, 1998

      45 Kordas, K., "Chip cooling with integrated carbon nanotube microfin architectures" 90 (90): 2007

      46 Bekyarova, E., "Chemically functionalized single-walled carbon nanotubes as ammonia sensors" 108 (108): 19717-19720, 2004

      47 Bekyarova, E., "Chemically engineered single-walled carbon nanotube materials for the electronic detection of hydrogen chloride" 22 (22): 848-852, 2010

      48 Snow, E. S., "Chemical detection with a single-walled carbon nanotube capacitor" 307 (307): 1942-1945, 2005

      49 Avouris, P., "Carbon-based electronics" 2 (2): 605-615, 2007

      50 Saito, S., "Carbon nanotubes for next-generation electronics devices" 278 (278): 77-78, 1997

      51 Kim, S. N., "Carbon nanotubes for electronic and electrochemical detection of biomolecules" 19 (19): 3214-3228, 2007

      52 Appenzeller, J., "Carbon nanotubes as potential building blocks for future nanoelectronics" 64 (64): 391-397, 2002

      53 Rueckes, T., "Carbon nanotube-based nonvolatile random access memory for molecular computing" 289 (289): 94-97, 2000

      54 Britto, P. J., "Carbon nanotube electrode for oxidation of dopamine" 41 (41): 121-125, 1996

      55 Iwai, T., "Carbon nanotube bumps for thermal electric conduction in transistor" 43 (43): 508-515, 2007

      56 Cao, W. Q., "Breath analysis : Potential for clinical diagnosis and exposure assessment" 52 (52): 800-811, 2006

      57 Wong, H. S. P., "Beyond the conventional transistor" 46 (46): 133-168, 2002

      58 Fukuda, T., "Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations" 91 (91): 1803-1818, 2003

      59 Daniel, S., "A review of DNA functionalized/grafted carbon nanotubes and their characterization" 122 (122): 672-682, 2007

      60 Abraham, J. K., "A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor" 13 (13): 1045-1049, 2004

      61 Williams, P. T., "A Review of Pollution from Waste Incineration" 4 (4): 26-34, 1990

      62 Close, G. F., "A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors" 8 (8): 706-709, 2008

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2021 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-12-01 평가 등재 탈락 (해외등재 학술지 평가)
      2013-10-01 평가 SCOPUS 등재 (등재유지) KCI등재
      2011-11-01 학술지명변경 한글명 : 스마트 구조와 시스템 국제 학술지 -> Smart Structures and Systems, An International Journal KCI등재후보
      2011-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2007-06-12 학술지등록 한글명 : 스마트 구조와 시스템 국제 학술지
      외국어명 : Smart Structures and Systems, An International Journal
      KCI등재후보
      2007-06-12 학술지등록 한글명 : 컴퓨터와 콘크리트 국제학술지
      외국어명 : Computers and Concrete, An International Journal
      KCI등재후보
      2007-04-09 학회명변경 한글명 : (사)국제구조공학회 -> 국제구조공학회 KCI등재후보
      2005-06-16 학회명변경 영문명 : Ternational Association Of Structural Engineering And Mechanics -> International Association of Structural Engineering And Mechanics KCI등재후보
      2005-01-01 평가 SCIE 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.17 0.44 1.04
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.97 0.88 0.318 0.18
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼