RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Development of a protein-ligand docking program based on global optimization

      한글로보기

      https://www.riss.kr/link?id=T13437345

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Protein-ligand docking has become an essential tool for computer-aided drug discovery since docking programs were first developed in 1980’s. The goals of docking are to predict 1) the binding mode and 2) the binding affinity of a given protein-ligand complex accurately. Accurate prediction of binding mode requires appropriate sampling of both protein and ligand conformations. Many available docking programs sample ligand structures successfully because ligand has a relatively small number of degrees of freedom. However, a lot of current docking programs treat receptor as a rigid molecule although receptor often adapts its shape to bound ligand because treating receptor flexibility is a very complicated problem. First of all, the large conformational space of receptor is a challenge for typical sampling methods. In addition, current energy functions such as empirical docking score functions or force field-based energy functions do not accurately describe flexible receptor-flexible ligand interactions yet.
      In this thesis, the development process of an efficient docking program that treats receptor flexible, called GalaxyDock, is described. A powerful global optimization technique, called conformational space annealing, was employed for simultaneous sampling of the conformational space of protein and ligand. In addition, a new energy function for flexible-receptor docking was designed by combining the AutoDock energy function and a knowledge-based ROTA potential. With these components for sampling and scoring, GalaxyDock shows high performances in the binding pose prediction and virtual screening benchmark tests when compared to other state-of-art docking programs. This result suggests that the GalaxyDock program can provide a firm basis for further method developments and for practical applications to in sillico drug discovery processes.
      번역하기

      Protein-ligand docking has become an essential tool for computer-aided drug discovery since docking programs were first developed in 1980’s. The goals of docking are to predict 1) the binding mode and 2) the binding affinity of a given protein-ligan...

      Protein-ligand docking has become an essential tool for computer-aided drug discovery since docking programs were first developed in 1980’s. The goals of docking are to predict 1) the binding mode and 2) the binding affinity of a given protein-ligand complex accurately. Accurate prediction of binding mode requires appropriate sampling of both protein and ligand conformations. Many available docking programs sample ligand structures successfully because ligand has a relatively small number of degrees of freedom. However, a lot of current docking programs treat receptor as a rigid molecule although receptor often adapts its shape to bound ligand because treating receptor flexibility is a very complicated problem. First of all, the large conformational space of receptor is a challenge for typical sampling methods. In addition, current energy functions such as empirical docking score functions or force field-based energy functions do not accurately describe flexible receptor-flexible ligand interactions yet.
      In this thesis, the development process of an efficient docking program that treats receptor flexible, called GalaxyDock, is described. A powerful global optimization technique, called conformational space annealing, was employed for simultaneous sampling of the conformational space of protein and ligand. In addition, a new energy function for flexible-receptor docking was designed by combining the AutoDock energy function and a knowledge-based ROTA potential. With these components for sampling and scoring, GalaxyDock shows high performances in the binding pose prediction and virtual screening benchmark tests when compared to other state-of-art docking programs. This result suggests that the GalaxyDock program can provide a firm basis for further method developments and for practical applications to in sillico drug discovery processes.

      더보기

      목차 (Table of Contents)

      • Abstract .............................................................................................
      • i
      • Contents .............................................................................................
      • iii
      • Abstract .............................................................................................
      • i
      • Contents .............................................................................................
      • iii
      • List of Figures .................................................................................
      • vi
      • List of Tables ...................................................................................
      • viii
      • 1. Introduction ..................................................................................
      • 1
      • 1.1. Overview of protein-ligand docking ....................................
      • 1
      • 1.2. Sampling methods of protein-ligand docking .....................
      • 2
      • 1.3. Scoring problem of protein-ligand docking ........................
      • 3
      • 1.4. Flexble-receptor docking ........................................................
      • 5
      • 1.5. Outline of this thesis .............................................................
      • 7
      • 2. LigDockCSA: a rigid-receptor docking program .....................
      • 9
      • 2.1. Overview of this section .......................................................
      • 9
      • 2.2. Methods ...................................................................................
      • 10
      • 2.2.1. Benchmark set and AutoDock calculations ....................
      • 10
      • 2.2.2. Energy function for protein-ligand docking ...................
      • 11
      • 2.2.3. Application of conformational space annealing to
      • protein-ligand docking .....................................................
      • 13
      • 2.3. Results and discussion ...........................................................
      • 16
      • 2.3.1. Performance of CSA when combined with the
      • AutoDock scoring function .............................................
      • 16
      • 2.3.2. Energy function for LigDockCSA ..................................
      • 20
      • 2.3.3. Performance of LigDockCSA ..........................................
      • 25
      • 2.4. Conclusion of this section ....................................................
      • 32
      • 3. GalaxyDock: a flexible-receptor docking program ..................
      • 33
      • 3.1. Overview of this section .......................................................
      • 33
      • 3.2. Methods ...................................................................................
      • 34
      • 3.2.1. Energy function for flexible protein-ligand docking .....
      • 34
      • 3.2.2. GalaxyDock sampling that incorporates side-chain
      • flexibility ...........................................................................
      • 37
      • 3.2.3. Cross-docking benchmark test .........................................
      • 39
      • 3.2.3.1. HIV protease ................................................................
      • 40
      • 3.2.3.2. LXRβ .............................................................................
      • 41
      • 3.2.3.3. cAPK .............................................................................
      • 41
      • 3.2.3.4. Diverse set ....................................................................
      • 42
      • 3.3. Results and discussion ...........................................................
      • 43
      • 3.3.1. Test results on the HIV protease set .............................
      • 48
      • 3.3.2. Test results on the LXRβ set .........................................
      • 50
      • 3.3.3. Test results on the cAPK set ..........................................
      • 54
      • 3.3.4. Test results on the diverse set ........................................
      • 55
      • 3.3.5. Effect of using rotamers ..................................................
      • 58
      • 3.4. Conclusion of this section ....................................................
      • 60
      • 4. GalaxyDock2: improving GalaxyDock using beta-complex
      • and binding affinity prediction .................................................
      • 61
      • 4.1. Overview of this section .......................................................
      • 61
      • 4.2. Methods ...................................................................................
      • 63
      • 4.2.1. Initial bank generation using Voronoi diagrams ...........
      • 63
      • 4.2.2. Benchmark test sets for binding mode prediction ........
      • 66
      • 4.2.3. Development of binding affinity function ......................
      • 67
      • 4.2.4. Virtual screening benchmark set .....................................
      • 73
      • 4.2.4.1. Virtual screening using GalaxyDock2 .......................
      • 74
      • 4.2.4.2. Virtual screening using AutoDock4 ...........................
      • 74
      • 4.2.4.3. Virtual screening using UCSF DOCK6 ....................
      • 75
      • 4.2.4.4. Measures for assessing virtual screening results ......
      • 75
      • 4.2.5. Protein and ligand preparation ........................................
      • 77
      • 4.3. Results and discussion ...........................................................
      • 77
      • 4.3.1. Binding mode prediction ..................................................
      • 77
      • 4.3.2. Binding affinity prediction ...............................................
      • 86
      • 4.3.3. Virtual screening ...............................................................
      • 92
      • 4.4. Conclusion of this section ....................................................
      • 97
      • 5. Conclusion ....................................................................................
      • 99
      • Appendix ...........................................................................................
      • 102
      • Bibliography ......................................................................................
      • 111
      • 국문초록 ...........................................................................................
      • 121
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼