RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering

      한글로보기

      https://www.riss.kr/link?id=A107460401

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Metabolic engineering allows development of microbial strains efficiently producing chemicals and materials, but it requires much time, effort, and cost to make the strains industrially competitive. Systems metabolic engineering, which integr...

      <P>Metabolic engineering allows development of microbial strains efficiently producing chemicals and materials, but it requires much time, effort, and cost to make the strains industrially competitive. Systems metabolic engineering, which integrates tools and strategies of systems biology, synthetic biology, and evolutionary engineering with traditional metabolic engineering, has recently been used to facilitate development of high-performance strains. The past decade has witnessed this interdisciplinary strategy continuously being improved toward the development of industrially competitive overproducer strains. In this article, current trends in systems metabolic engineering including tools and strategies are reviewed, focusing on recent developments in selection of host strains, metabolic pathway reconstruction, tolerance enhancement, and metabolic flux optimization. Also, future challenges and prospects are discussed.</P> <P><B>Highlights</B></P> <P>Systems metabolic engineering, which integrated systems biology, synthetic biology, and evolutionary engineering with traditional metabolic engineering, is facilitating the development of high performance strains.</P> <P>More diverse microorganisms are being used as production host strains, supported by the new genetic tools and strategies.</P> <P>Recent advances in biosynthetic/semisynthetic design strategies are expanding the portfolio of products that can be produced biologically.</P> <P>Evolutionary engineering tools and strategies are facilitating the improvement of strain and enzyme performances.</P> <P>Advances in tools and strategies of omics, <I>in silico</I> metabolic simulation, genetic and genomic engineering, and high-throughput screening are accelerating optimization of metabolic fluxes for the enhanced production of target bioproducts.</P>

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼