RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCI SCIE SCOPUS

      Flexible Prime-Field Genus 2 Hyperelliptic Curve Cryptography Processor with Low Power Consumption and Uniform Power Draw

      한글로보기

      https://www.riss.kr/link?id=A103377392

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper presents an energy-efficient (low power) prime-field hyperelliptic curve cryptography (HECC) processor with uniform power draw. The HECC processor performs divisor scalar multiplication on the Jacobian of genus 2 hyperelliptic curves defined over prime fields for arbitrary field and curve parameters. It supports the most frequent case of divisor doubling and addition. The optimized implementation, which is synthesized in a 0.13 m standard CMOS technology, performs an 81-bit divisor multiplication in 503 ms consuming only 6.55 J of energy (average power consumption is 12.76 W). In addition, we present a technique to make the power consumption of the HECC processor more uniform and lower the peaks of its power consumption.
      번역하기

      This paper presents an energy-efficient (low power) prime-field hyperelliptic curve cryptography (HECC) processor with uniform power draw. The HECC processor performs divisor scalar multiplication on the Jacobian of genus 2 hyperelliptic curves define...

      This paper presents an energy-efficient (low power) prime-field hyperelliptic curve cryptography (HECC) processor with uniform power draw. The HECC processor performs divisor scalar multiplication on the Jacobian of genus 2 hyperelliptic curves defined over prime fields for arbitrary field and curve parameters. It supports the most frequent case of divisor doubling and addition. The optimized implementation, which is synthesized in a 0.13 m standard CMOS technology, performs an 81-bit divisor multiplication in 503 ms consuming only 6.55 J of energy (average power consumption is 12.76 W). In addition, we present a technique to make the power consumption of the HECC processor more uniform and lower the peaks of its power consumption.

      더보기

      참고문헌 (Reference)

      1 J. Fan, "ight-Weight Implementation Options for Curve-Based Cryptography: HECC is also Ready for RFID" 1-6, 2009

      2 W. Rankl, "Smart Card Handbook" John Wiley & Sons Inc. 2003

      3 K. Sakiyama, "Small-Footprint ALU for Public-Key Processors for Pervasive Security" 93-104, 2006

      4 M. Aigner, "Seven Reasons for Application of Standardized Crypto Functionality on Low Cost Tags" 70-73, 2007

      5 L. Batina, "Secure Integrated Circuits and System" Springer 179-195, 2010

      6 K. Sakiyama, "Secure Design Methodology and Implementation for Embedded Public-Key Cryptosystems" Katholieke Universiteit Leuven 2007

      7 A. Perrig, "SPINS: Security Protocols for Sensor Networks" 8 (8): 521-534, 2002

      8 T. Lange, "SCA Resistant Parallel Explicit Formula for Addition and Doubling of Divisors in the Jacobian of Hyperelliptic Curves of Genus 2" 403-416, 2005

      9 K. Finkenzeller, "RFID Handbook" John Wiley & Sons Inc. 2010

      10 D. Culler, "Overview of Sensor Networks" 37 (37): 41-49, 2004

      1 J. Fan, "ight-Weight Implementation Options for Curve-Based Cryptography: HECC is also Ready for RFID" 1-6, 2009

      2 W. Rankl, "Smart Card Handbook" John Wiley & Sons Inc. 2003

      3 K. Sakiyama, "Small-Footprint ALU for Public-Key Processors for Pervasive Security" 93-104, 2006

      4 M. Aigner, "Seven Reasons for Application of Standardized Crypto Functionality on Low Cost Tags" 70-73, 2007

      5 L. Batina, "Secure Integrated Circuits and System" Springer 179-195, 2010

      6 K. Sakiyama, "Secure Design Methodology and Implementation for Embedded Public-Key Cryptosystems" Katholieke Universiteit Leuven 2007

      7 A. Perrig, "SPINS: Security Protocols for Sensor Networks" 8 (8): 521-534, 2002

      8 T. Lange, "SCA Resistant Parallel Explicit Formula for Addition and Doubling of Divisors in the Jacobian of Hyperelliptic Curves of Genus 2" 403-416, 2005

      9 K. Finkenzeller, "RFID Handbook" John Wiley & Sons Inc. 2010

      10 D. Culler, "Overview of Sensor Networks" 37 (37): 41-49, 2004

      11 P.P. López, "Lightweight Cryptography in Radio Frequency Identification (RFID) Systems" Carlos III Univ. of Madrid 2008

      12 J. Pelzl, "Hyperelliptic Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves" 351-365, 2003

      13 Howon Kim, "Hyperelliptic Curve Crypto-Coprocessor over Affine and Projective Coordinates" 한국전자통신연구원 30 (30): 365-376, 2008

      14 H. Cohen, "Handbook of Elliptic and Hyperelliptic Curve Cryptography" Chapman and Hall/CRC 2006

      15 J. Fan, "HECC Goes Embedded:An Area-Efficient Implementation of HECC" 387-400, 2008

      16 D. Hankerson, "Guide to Elliptic Curve Cryptography" Springer-Verlag New York Inc. 2004

      17 T. Lange, "Formulae for Arithmetic on Genus 2 Hyperelliptic Curves" 15 (15): 295-328, 2005

      18 G. Elias, "FPGA Design of HECC Coprocessors" 343-346, 2004

      19 Y.K. Lee, "Elliptic Curve–Based Security Processor for RFID" 57 (57): 1514-1527, 2008

      20 X. Fan, "Efficient Explicit Formulae for Genus 2Hyperelliptic Curves over Prime Fields and their Implementations" 155-172, 2007

      21 J.P. Kaps, "Cryptography on a Speck of Dust" 40 (40): 38-44, 2007

      22 T. Wollinger, "Cantor versus Harley:Optimization and Analysis of Explicit Formulae for Hyperelliptic Curve Cryptosystems" 54 (54): 861-872, 2005

      23 P. Rong, "An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries" 14 (14): 441-451, 2006

      24 N. Koblitz, "Algebraic Aspects of Cryptography" Springer-Verlag 1998

      25 P. Gaudry, "Advances in Elliptic Curve Cryptography" Cambridge University Press 133-150, 2005

      26 H.R. Ahmadi, "A Power-Optimized Low-Energy Elliptic-Curve Crypto-Processor" 7 (7): 1752-1759, 2010

      27 H.R. Ahmadi, "A Low-Power and Low-Energy Flexible GF(p) ECC Processor" 11 (11): 724-736, 2010

      28 A. Hodjat, "A Hyperelliptic Curve Crypto Coprocessor for an 8051 Microcontroller" 93-98, 2005

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2005-09-27 학술지등록 한글명 : ETRI Journal
      외국어명 : ETRI Journal
      KCI등재
      2003-01-01 평가 SCI 등재 (신규평가) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.78 0.28 0.57
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.47 0.42 0.4 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼