RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Norfloxacin salts of carboxylic acids curtail planktonic and biofilm mode of growth in ESKAPE pathogens

      한글로보기

      https://www.riss.kr/link?id=O119340275

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2018년

      • 작성언어

        -

      • Print ISSN

        1364-5072

      • Online ISSN

        1365-2672

      • 등재정보

        SCI;SCIE;SCOPUS

      • 자료형태

        학술저널

      • 수록면

        408-422   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      To enhance the antimicrobial and antibiofilm activity of norfloxacin against the planktonic and biofilm mode of growth in ESKAPE pathogens using chemically modified norfloxacin salts.
      Antimicrobial testing, synergy testing and time‐kill curve analysis were performed to evaluate antibacterial effect of norfloxacin carboxylic acid salts against ESKAPE pathogens. In vivo efficacy to reduce bacterial bioburden was evaluated in zebrafish infection model. Crystal violet assay and live–dead staining were performed to discern antibiofilm effect. Membrane permeability, integrity and molecular docking studies were carried out to ascertain the mechanism of action. The carboxylic acid salts, relative to parent molecule norfloxacin, displayed two‐ to fourfold reduction in minimum inhibitory concentration against Staphylococcus aureus and Pseudomonas aeruginosa, in addition to displaying potent bacteriostatic effect against certain members of ESKAPE pathogens. In vivo treatments revealed that norfloxacin tartrate (SRIN2) reduced MRSA bioburden by greater than 1 log fold relative to parent molecule in the muscle tissue. In silico docking with gyrA of S. aureus showed increased affinity of SRIN2 towards DNA gyrase. The enhanced antibacterial effect of norfloxacin salts could be partially accounted by altered membrane permeability in S. aureus and perturbed membrane integrity in P. aeruginosa. Antibiofilm studies revealed that SRIN2 (norfloxacin tartrate) and SRIN3 (norfloxacin benzoate) exerted potent antibiofilm effect particularly against Gram‐negative ESKAPE pathogens. The impaired colonization of both S. aureus and P. aeruginosa due to improved norfloxacin salts was further supported by live–dead imaging.
      Norfloxacin carboxylic acid salts can act as potential alternatives in terms of drug resensitization and reuse.
      Our study shows that carboxylic acid salts of norfloxacin could be effectively employed to treat both planktonic‐ and biofilm‐based infections caused by select members of ESKAPE pathogens.
      번역하기

      To enhance the antimicrobial and antibiofilm activity of norfloxacin against the planktonic and biofilm mode of growth in ESKAPE pathogens using chemically modified norfloxacin salts. Antimicrobial testing, synergy testing and time‐kill curve analys...

      To enhance the antimicrobial and antibiofilm activity of norfloxacin against the planktonic and biofilm mode of growth in ESKAPE pathogens using chemically modified norfloxacin salts.
      Antimicrobial testing, synergy testing and time‐kill curve analysis were performed to evaluate antibacterial effect of norfloxacin carboxylic acid salts against ESKAPE pathogens. In vivo efficacy to reduce bacterial bioburden was evaluated in zebrafish infection model. Crystal violet assay and live–dead staining were performed to discern antibiofilm effect. Membrane permeability, integrity and molecular docking studies were carried out to ascertain the mechanism of action. The carboxylic acid salts, relative to parent molecule norfloxacin, displayed two‐ to fourfold reduction in minimum inhibitory concentration against Staphylococcus aureus and Pseudomonas aeruginosa, in addition to displaying potent bacteriostatic effect against certain members of ESKAPE pathogens. In vivo treatments revealed that norfloxacin tartrate (SRIN2) reduced MRSA bioburden by greater than 1 log fold relative to parent molecule in the muscle tissue. In silico docking with gyrA of S. aureus showed increased affinity of SRIN2 towards DNA gyrase. The enhanced antibacterial effect of norfloxacin salts could be partially accounted by altered membrane permeability in S. aureus and perturbed membrane integrity in P. aeruginosa. Antibiofilm studies revealed that SRIN2 (norfloxacin tartrate) and SRIN3 (norfloxacin benzoate) exerted potent antibiofilm effect particularly against Gram‐negative ESKAPE pathogens. The impaired colonization of both S. aureus and P. aeruginosa due to improved norfloxacin salts was further supported by live–dead imaging.
      Norfloxacin carboxylic acid salts can act as potential alternatives in terms of drug resensitization and reuse.
      Our study shows that carboxylic acid salts of norfloxacin could be effectively employed to treat both planktonic‐ and biofilm‐based infections caused by select members of ESKAPE pathogens.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼