RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Equalized Net Diffusion (END) for the Preservation of Fine Structures in PDE-based Image Restoration

      한글로보기

      https://www.riss.kr/link?id=A99863692

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The article is concerned with a mathematical modeling which can improve performances of PDE-based restoration models. Most PDE-based restoration models tend to lose fine structures due to certain degrees of nonphysical dissipation. Sources of such an undesirable dissipation are analyzed for total variation-based restoration models. Based on the analysis, the so-called equalized net diffusion (END) modeling is suggested in order for PDE-based restoration models to significantly reduce nonphysical dissipation. It has been numerically verified that the END-incorporated models can preserve and recover fine structures satisfactorily, outperforming the basic models for both quality and efficiency. Various numerical examples are shown to demonstrate effectiveness of the END modeling.
      번역하기

      The article is concerned with a mathematical modeling which can improve performances of PDE-based restoration models. Most PDE-based restoration models tend to lose fine structures due to certain degrees of nonphysical dissipation. Sources of such an ...

      The article is concerned with a mathematical modeling which can improve performances of PDE-based restoration models. Most PDE-based restoration models tend to lose fine structures due to certain degrees of nonphysical dissipation. Sources of such an undesirable dissipation are analyzed for total variation-based restoration models. Based on the analysis, the so-called equalized net diffusion (END) modeling is suggested in order for PDE-based restoration models to significantly reduce nonphysical dissipation. It has been numerically verified that the END-incorporated models can preserve and recover fine structures satisfactorily, outperforming the basic models for both quality and efficiency. Various numerical examples are shown to demonstrate effectiveness of the END modeling.

      더보기

      목차 (Table of Contents)

      • ABSTRACT
      • Ⅰ. INTRODUCTION
      • Ⅱ. PRELIMINARIES
      • Ⅲ. DISSIPATION ANALYSIS
      • Ⅳ. EQUALIZED NET DIFFUSION (END)
      • ABSTRACT
      • Ⅰ. INTRODUCTION
      • Ⅱ. PRELIMINARIES
      • Ⅲ. DISSIPATION ANALYSIS
      • Ⅳ. EQUALIZED NET DIFFUSION (END)
      • Ⅴ. CHOICES FOR η AND γ
      • Ⅵ. NUMERICAL EXPERIMENTS
      • Ⅶ. CONCLUSIONS
      • REFERENCES
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼