RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      특징점 선택방법과 SVM 학습법을 이용한 당뇨병 데이터에서의 당뇨병성 신장합병증의 예측 = Prediction of Diabetic Nephropathy from Diabetes Dataset Using Feature Selection Methods and SVM Learning

      한글로보기

      https://www.riss.kr/link?id=A101119343

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Diabetes mellitus can cause devastating complications, which often result in disability and death, and diabetic nephropathy is a leading cause of death in people with diabetes. In this study, we tried to predict the onset of diabetic nephropathy from ...

      Diabetes mellitus can cause devastating complications, which often result in disability and death, and diabetic nephropathy is a leading cause of death in people with diabetes. In this study, we tried to predict the onset of diabetic nephropathy from an irregular and unbalanced diabetic dataset. We collected clinical data from 292 patients with type 2 diabetes and performed preprocessing to extract 184 features to resolve the irregularity of the dataset. We compared several feature selection methods, such as ReliefF and sensitivity analysis, to remove redundant features and improve the classification performance. We also compared learning methods with support vector machine, such as equal cost learning and cost-sensitive learning to tackle the unbalanced problem in the dataset. The best classifier with the 39 selected features gave 0.969 of the area under the curve by receiver operation characteristics analysis, which represents that our method can predict diabetic nephropathy with high generalization performance from an irregular and unbalanced dataset, and physicians can benefit from it for predicting diabetic nephropathy.

      더보기

      참고문헌 (Reference)

      1 I. Kononenko, "analysis and extensions of relief"

      2 K. J. Cios, "Uniqueness of medical data mining" 26 : 1-24, 2002.

      3 T. Furuta, "The role of macrophages in diabetic glomeruloscelerosis American Journal of Kidney Diseases" 21 : 480-485, 1993.

      4 C. Elkan, "The foundations of cost-sensitive learning" 2001.08

      5 V. Vapnik, "The Nature of Statistical Learning Theory" New York: Springer 1995.

      6 M. Stevensen, "Sensitivity of feedforward neural networks to weight errors" 1 : 71-80, 1990.

      7 G. Sterner, "Raised platelet levels in diabetes mellitus complicated with nephropathy" 244 : 437-441, 1998.

      8 H. S. Jo, "Quality control of diagnostic coding in the Korean Burden of Disease Project" 2004.10

      9 J. C. Platt, "Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods" in Advances in Large Margin Classifiers: MIT Press 1999.

      10 P. Rossing, "Predictors of mortality in insulin dependent diabetes 10 year observational follow up study" 313 : 779-784, 1996.

      1 I. Kononenko, "analysis and extensions of relief"

      2 K. J. Cios, "Uniqueness of medical data mining" 26 : 1-24, 2002.

      3 T. Furuta, "The role of macrophages in diabetic glomeruloscelerosis American Journal of Kidney Diseases" 21 : 480-485, 1993.

      4 C. Elkan, "The foundations of cost-sensitive learning" 2001.08

      5 V. Vapnik, "The Nature of Statistical Learning Theory" New York: Springer 1995.

      6 M. Stevensen, "Sensitivity of feedforward neural networks to weight errors" 1 : 71-80, 1990.

      7 G. Sterner, "Raised platelet levels in diabetes mellitus complicated with nephropathy" 244 : 437-441, 1998.

      8 H. S. Jo, "Quality control of diagnostic coding in the Korean Burden of Disease Project" 2004.10

      9 J. C. Platt, "Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods" in Advances in Large Margin Classifiers: MIT Press 1999.

      10 P. Rossing, "Predictors of mortality in insulin dependent diabetes 10 year observational follow up study" 313 : 779-784, 1996.

      11 T. Onuma, "High incidence of diabetic nephropathy in non-insulin-dependent diabetic patients with heterozygous familial hypercholesterolemia" 55 : 532-536, 1994.

      12 K. G. Alberti, "Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation" 17 : 539-553, 1998.

      13 K. Veropoulos, "Controlling the sensitivity of support vector machines" 1999.08

      14 I. Guyon, "An introduction to variable and feature selection" 3 : 1157-1182, 2003.

      15 C. J. C. Burges, "A tutorial on support vector machines for pattern recognition" 2 : 121-167, 1998.

      16 H. S. Choi, "A study on the multi-view based computer aided diagnosis in digital mammography" 28 : 162-168, 2007.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-10-06 학술지명변경 외국어명 : 미등록 -> Joural of Biomedical Engineering Research KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.08 0.08 0.12
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.11 0.09 0.307 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼