RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      DEMON style neural networks front-end features for passive sonar classification

      한글로보기

      https://www.riss.kr/link?id=A109632656

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study proposes a novel neural network front-end feature based on conventional sonar signal processing. It simplifies the extraction of Detection Envelope Modulation On Noise (DEMON)gram, a method used in passive sonar signal processing, by implementing it with two consecutive Short-Time Fourier Transform (STFT) operations. This converts the 1-dimensional sonar signal into a 2-imensional feature that can effectively capture the frequency modulation characteristics of cavitation generated by propellers. This DEMONgram-based frontend feature, when combined with conventional Mel spectrogram-based features in audio classification, can demonstrate higher performance. Experimental results on the ShipsEar dataset show that the proposed method achieves an accuracy of 81.0 %, a 5.8 % point improvement over the conventional Mel spectrogram-based features, thus demonstrating its effectiveness in passive sonar signal classification tasks.
      번역하기

      This study proposes a novel neural network front-end feature based on conventional sonar signal processing. It simplifies the extraction of Detection Envelope Modulation On Noise (DEMON)gram, a method used in passive sonar signal processing, by implem...

      This study proposes a novel neural network front-end feature based on conventional sonar signal processing. It simplifies the extraction of Detection Envelope Modulation On Noise (DEMON)gram, a method used in passive sonar signal processing, by implementing it with two consecutive Short-Time Fourier Transform (STFT) operations. This converts the 1-dimensional sonar signal into a 2-imensional feature that can effectively capture the frequency modulation characteristics of cavitation generated by propellers. This DEMONgram-based frontend feature, when combined with conventional Mel spectrogram-based features in audio classification, can demonstrate higher performance. Experimental results on the ShipsEar dataset show that the proposed method achieves an accuracy of 81.0 %, a 5.8 % point improvement over the conventional Mel spectrogram-based features, thus demonstrating its effectiveness in passive sonar signal classification tasks.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼