RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Design, Implementation, and Flight Tests of a Feedback Linearization Controller for Multirotor UAVs

      한글로보기

      https://www.riss.kr/link?id=A104985458

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper proposes a feedback-linearization-based control algorithm for multirotor unmanned aerial vehicles (UAVs). The feedback linearization scheme is highly efficient for considering nonlinearity between the rotational and translational motion of multirotor UAVs. We also propose a dynamic equation that reflects the aerodynamic effects of the vehicles; the equation’s parameters can be determined through curve fitting using actual flight data. We derive the feedback linearization controller from the proposed dynamic equation, and propose a Luenberger observer to attenuate measurement noises. The proposed algorithm is implemented using our in-house flight control computer, and we describe its implementation in detail. To investigate the performance of the proposed algorithm, we carry out two flight scenarios: the first scenario, an autonomous landing on a moving platform, is a test of maneuverability; the second, picking up and replacing an object, test the algorithm’s accuracy. In these scenarios, the proposed algorithm precisely controls multirotor UAVs, and we confirm that it can be successfully applied to real flight environments.
      번역하기

      This paper proposes a feedback-linearization-based control algorithm for multirotor unmanned aerial vehicles (UAVs). The feedback linearization scheme is highly efficient for considering nonlinearity between the rotational and translational motion of ...

      This paper proposes a feedback-linearization-based control algorithm for multirotor unmanned aerial vehicles (UAVs). The feedback linearization scheme is highly efficient for considering nonlinearity between the rotational and translational motion of multirotor UAVs. We also propose a dynamic equation that reflects the aerodynamic effects of the vehicles; the equation’s parameters can be determined through curve fitting using actual flight data. We derive the feedback linearization controller from the proposed dynamic equation, and propose a Luenberger observer to attenuate measurement noises. The proposed algorithm is implemented using our in-house flight control computer, and we describe its implementation in detail. To investigate the performance of the proposed algorithm, we carry out two flight scenarios: the first scenario, an autonomous landing on a moving platform, is a test of maneuverability; the second, picking up and replacing an object, test the algorithm’s accuracy. In these scenarios, the proposed algorithm precisely controls multirotor UAVs, and we confirm that it can be successfully applied to real flight environments.

      더보기

      참고문헌 (Reference)

      1 이다솔, "저가 하드웨어 기반 멀티로터 비행제어 컴퓨터 설계 및 검증" 한국항공우주학회 45 (45): 401-408, 2017

      2 "TivaWare for C Series"

      3 Namhoon Cho, "Three-Dimensional Nonlinear Differential Geometric Path-Following Guidance Law" American Institute of Aeronautics and Astronautics (AIAA) 38 (38): 2366-2385, 2015

      4 Wei, W, "System Identification and Controller Optimization of a Quadrotor UAV" 2015

      5 "System Identification Toolbox"

      6 Ricardo Sanz, "Robust Control of Quadrotors Based on an Uncertainty and Disturbance Estimator" ASME International 138 (138): 071006-, 2016

      7 Al-Hiddabi, S. A, "Quadrotor Control Using Feedback Linearization with Dynamic Extension" 2009

      8 이병윤, "Performance Comparison of Three Different Types of Attitude Control Systems of the Quad-Rotor UAV to Perform Flip Maneuver" 한국항공우주학회 14 (14): 58-66, 2013

      9 Khatoon, S, "PID & LQR Control for a Quadrotor: Modeling and Simulation" 2014

      10 T. Dierks, "Output Feedback Control of a Quadrotor UAV Using Neural Networks" Institute of Electrical and Electronics Engineers (IEEE) 21 (21): 50-66, 2010

      1 이다솔, "저가 하드웨어 기반 멀티로터 비행제어 컴퓨터 설계 및 검증" 한국항공우주학회 45 (45): 401-408, 2017

      2 "TivaWare for C Series"

      3 Namhoon Cho, "Three-Dimensional Nonlinear Differential Geometric Path-Following Guidance Law" American Institute of Aeronautics and Astronautics (AIAA) 38 (38): 2366-2385, 2015

      4 Wei, W, "System Identification and Controller Optimization of a Quadrotor UAV" 2015

      5 "System Identification Toolbox"

      6 Ricardo Sanz, "Robust Control of Quadrotors Based on an Uncertainty and Disturbance Estimator" ASME International 138 (138): 071006-, 2016

      7 Al-Hiddabi, S. A, "Quadrotor Control Using Feedback Linearization with Dynamic Extension" 2009

      8 이병윤, "Performance Comparison of Three Different Types of Attitude Control Systems of the Quad-Rotor UAV to Perform Flip Maneuver" 한국항공우주학회 14 (14): 58-66, 2013

      9 Khatoon, S, "PID & LQR Control for a Quadrotor: Modeling and Simulation" 2014

      10 T. Dierks, "Output Feedback Control of a Quadrotor UAV Using Neural Networks" Institute of Electrical and Electronics Engineers (IEEE) 21 (21): 50-66, 2010

      11 D. Luenberger, "Observers for multivariable systems" Institute of Electrical and Electronics Engineers (IEEE) 11 (11): 190-197, 1966

      12 Khalil, H. K, "Nonlinear Systems" Pearson 2002

      13 Voos, H, "Nonlinear Control of a Quadrotor Micro- Uav Using Feedback-Linearization" 2009

      14 Xiang-Jian Chen, "Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV" The Korean Society for Aeronautical & Space Sciences 14 (14): 172-182, 2013

      15 Reyes-Valeria, E, "LQR Control for a Quadrotor Using unit Quaternions: Modeling and Simulation" Proceedings of the International Conference on Electronics, Communications and Computing 2013

      16 Abdellah Mokhtari, "Feedback linearization and linear observer for a quadrotor unmanned aerial vehicle" Informa UK Limited 20 (20): 71-91, 2006

      17 이대원, "Feedback Linearization vs. Adaptive Sliding Mode Control for a Quadrotor Helicopter" 제어·로봇·시스템학회 7 (7): 419-428, 2009

      18 Benallegue, A, "Feedback Linearization and High Order Sliding Mode Observer for a Quadrotor UAV" 2006

      19 "EAGLE"

      20 Li, J, "Dynamic Analysis and PID Control for a Quadrotor" 2011

      21 Szafranski, G, "Different Approaches of PID Control UAV Type Quadrotor" 2011

      22 Lee, H, "Design of Vision-Based Autonomous Landing System on the Moving Vehicle Using the UAV" 2017

      23 "Curve Fitting Toolbox"

      24 "Code Composer Studio"

      25 Sanghyuk Park, "Autonomous aerobatics on commanded path" Elsevier BV 22 (22): 64-74, 2012

      26 Yueneng Yang, "Attitude regulation for unmanned quadrotors using adaptive fuzzy gain-scheduling sliding mode control" Elsevier BV 54 : 208-217, 2016

      27 Huo, X, "Attitude Stabilization Control of a Quadrotor UAV by Using Backstepping Approach" 2014 : 9-, 2014

      28 Zachary T. Dydek, "Adaptive Control of Quadrotor UAVs: A Design Trade Study With Flight Evaluations" Institute of Electrical and Electronics Engineers (IEEE) 21 (21): 1400-1406, 2013

      29 Radke, A, "A Survey of State and Disturbance Observers for Practitioners" 2006

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-10-01 평가 등재학술지 선정 (기타) KCI등재
      2011-01-01 평가 등재후보학술지 선정 (기타) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.37 0.2 0.3
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.26 0.24 0.394 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼