The lateral transfer of symbiotic genes converting a predisposed soil bacteria into a legume symbiont has occurred repeatedly and independently during the evolution of rhizobia. We experimented the transfer of a symbiotic plasmid between Bradyrhizobiu...
The lateral transfer of symbiotic genes converting a predisposed soil bacteria into a legume symbiont has occurred repeatedly and independently during the evolution of rhizobia. We experimented the transfer of a symbiotic plasmid between Bradyrhizobium strains. The originality of the DOA9 donor is that it harbours a symbiotic mega‐plasmid (pDOA9) containing nod, nif and T3SS genes while the ORS278 recipient has the unique property of inducing nodules on some Aeschynomene species in the absence of Nod factors (NFs). We observed that the chimeric strain ORS278‐pDOA9* lost its ability to develop a functional symbiosis with Aeschynomene. indica and Aeschynomene evenia. The mutation of rhcN and nodB led to partial restoration of nodule efficiency, indicating that T3SS effectors and NFs block the establishment of the NF‐independent symbiosis. Conversely, ORS278‐pDOA9* strain acquired the ability to form nodules on Crotalaria juncea and Macroptillium artropurpureum but not on NF‐dependent Aeschynomene (A. afraspera and A. americana), suggesting that the ORS278 strain also harbours incompatible factors that block the interaction with these species. These data indicate that the symbiotic properties of a chimeric rhizobia cannot be anticipated due to new combination of symbiotic and non‐symbiotic determinants that may interfere during the interaction with the host plant.