RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Effects of Urea as an Additive in Fe2O3 Thin‑Film Photoelectrodes

      한글로보기

      https://www.riss.kr/link?id=A106609374

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this study, an Fe2O3photoelectrode was grown on a fluorine-doped tin oxide substrate via microwave chemical bath deposition. We added various amounts of urea as an additive to the FeCl3precursor for the fabrication of the Fe2O3photoelectrodeand inv...

      In this study, an Fe2O3photoelectrode was grown on a fluorine-doped tin oxide substrate via microwave chemical bath deposition.
      We added various amounts of urea as an additive to the FeCl3precursor for the fabrication of the Fe2O3photoelectrodeand investigated the effects of the concentration of the urea additive on the morphological, optical, structural, electrical,and photoelectrochemical properties of this photoelectrode. Among the different concentrations evaluated, the maximumphotocurrent density (0.51 mA/cm2 at 0.6 V vs. SCE) was obtained using 0.05 M urea, as the resulting electrode had thegreatest thickness, highest flat-band potential, and preferential growth along the (110) plane along with favorable electrontransport characteristics. The maximum photocurrent density of the sample prepared with 0.05 M urea was approximately60% greater than that obtained from the sample prepared in the absence of urea. This study showed that the photoelectrochemicalproperties of the Fe2O3photoelectrode were substantially influenced by the changes in the morphological, optical,structural, and electrical properties caused by the addition of urea.

      더보기

      참고문헌 (Reference)

      1 Hu, X., "α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties" 19 : 2324-2329, 2007

      2 Steier, L., "Understanding the role ofunderlayers and overlayers in thin film hematite photoanodes" 24 : 7681-7688, 2014

      3 Krbal, M., "TiO2 nanotube/chalcogenide-based photoelectrochemical cell : nanotube diameter dependence study" 121 : 6065-6071, 2017

      4 Kmentova, H., "Thermal sulfi dation of α-Fe2O3hematite to FeS 2 pyrite thin electrodes : correlation between surface morphology and photoelectrochemical functionality" 313 : 224-230, 2018

      5 Dutrizac, J.E., "The precipitation of hematite from ferric chloride media at atmospheric pressure" 30B : 993-1001, 1999

      6 Song, H., "Template-free synthesis of α-Fe2O3microcubes and their magnetic property" 5 : 200-202, 2010

      7 Hwang, J. Y., "Synthesis of monodispersed iron oxide particles by a large-scale microwave reactor" 193 : 1586-1591, 2006

      8 Singh, B. P., "Simple hydrolysis synthesis ofuniform rice-shaped β -FeOOH nanocrystals and their transformation to α-Fe2O3 microspheres" 2015 : 7-, 2015

      9 Katsuki, H., "Role of α-Fe2O3 morphology on the color of red pigment for porcelain" 86 : 183-185, 2003

      10 Zhao, D., "Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells" 54 : 1048-1059, 2016

      1 Hu, X., "α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties" 19 : 2324-2329, 2007

      2 Steier, L., "Understanding the role ofunderlayers and overlayers in thin film hematite photoanodes" 24 : 7681-7688, 2014

      3 Krbal, M., "TiO2 nanotube/chalcogenide-based photoelectrochemical cell : nanotube diameter dependence study" 121 : 6065-6071, 2017

      4 Kmentova, H., "Thermal sulfi dation of α-Fe2O3hematite to FeS 2 pyrite thin electrodes : correlation between surface morphology and photoelectrochemical functionality" 313 : 224-230, 2018

      5 Dutrizac, J.E., "The precipitation of hematite from ferric chloride media at atmospheric pressure" 30B : 993-1001, 1999

      6 Song, H., "Template-free synthesis of α-Fe2O3microcubes and their magnetic property" 5 : 200-202, 2010

      7 Hwang, J. Y., "Synthesis of monodispersed iron oxide particles by a large-scale microwave reactor" 193 : 1586-1591, 2006

      8 Singh, B. P., "Simple hydrolysis synthesis ofuniform rice-shaped β -FeOOH nanocrystals and their transformation to α-Fe2O3 microspheres" 2015 : 7-, 2015

      9 Katsuki, H., "Role of α-Fe2O3 morphology on the color of red pigment for porcelain" 86 : 183-185, 2003

      10 Zhao, D., "Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells" 54 : 1048-1059, 2016

      11 Dong, Q., "Preparation of α-Fe2O3particles with controlled shape and size via a facile hydrothermal route" 339 : 012004-, 2012

      12 Chen, M., "Preparation of akaganeite nanorods and their transformation to sphere shape hematite" 8 : 3942-3948, 2008

      13 Luan, J., "Photophysical and photocatalytic properties of novel M2 BiNbO7 (M = In and Ga)" 17 : S1-S3, 2006

      14 Bjorkstbn, U., "Photoelectrochemical studies on nanocrystalline hematite films" 6 : 858-863, 1994

      15 Choi, H., "Photoelectrochemical properties of hematite thin films grown by MW-CBD" 333 : 259-266, 2018

      16 Liu, Y., "Photoelectrochemical properties of Ni-doped Fe2O3 thin films prepared by electrodeposition" 59 : 121-127, 2012

      17 Lee, P. Y., "Photoelectrochemical characterization of n-type and p-type thin-film nanocrystalline Cu2 ZnSnSe4 photocathodes" 3 : 297-303, 2015

      18 Quinn, R. K., "Photoassisted electrolysis of water using single crystal α-Fe2O3 anodes" 11 : 1011-1017, 1976

      19 Bak, T., "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects" 27 : 991-1022, 2002

      20 Tauc, J., "Optical properties and electronic structure of amorphous germanium" 15 : 627-637, 1966

      21 Shinde, P. S., "Onset potential behavior in α-Fe2O3 photoanodes : the influence of surface and diffusion Sn doping on the surface states" 18 : 2495-2509, 2016

      22 Cheng, B., "Onepot template-free hydrothermal synthesis of monoclinic BiVO4 hollow microspheres and their enhanced visible-light photocatalytic activity" 2012 : 1-10, 2012

      23 Xiong, Q. Q., "One-step synthesis of hematite nanospindles from choline chloride/urea deep eutectic solvent with highly powerful storage versus lithium" 274 : 1-7, 2015

      24 Deng, C., "One-pot sonochemical fabrication of hierarchical hollow CuO submicrospheres" 18 : 5-, 2011

      25 Song, X. M., "One-dimensional Fe2O3 /TiO2 photoelectrode and investigation of its photoelectric properties in photoelectrochemical cell" 397 : 112-118, 2017

      26 Liu, S., "Novel composites of α-Fe2O3 tetrakaidecahedron and graphene oxide as an effective photoelectrode with enhanced photocurrent performances" 26 : 3331-3339, 2016

      27 Liu, Q., "Morphology-controlled α-Fe2O3 nanostructures on FTO substrates for photoelectrochemical water oxidation" 715 : 230-236, 2017

      28 Peiro, A. M., "Microwave activated chemical bath deposition (MW-CBD) of zinc oxide : influence of bath composition and substrate characteristics" 285 : 6-16, 2005

      29 Holi, A. M., "Hydrothermal deposition of CdS on vertically aligned ZnO nanorods for photoelectrochemical solar cell application" 27 : 7353-7360, 2016

      30 Einert, M., "Hollow α-Fe2O3 nanofibres for solar water oxidation : improving the photoelectrochemical performance by formation of α-Fe2O3 /ITO-composite photoanodes" 4 : 18444-18456, 2016

      31 Su, J., "Grown directly on transparent conducting oxide coated glass : synthesis and photoelectrochemical properties" 11 : 203-208, 2011

      32 Liu, X., "Fe2O3 -reduced graphene oxide composites synthesized via microwave-assisted method for sodium ion batteries" 166 : 12-16, 2015

      33 Chirita, M., "Fe-EDTA thermal decomposition, a route to highly crystalline hematite (Alpha Fe2O3) nanoparticle synthesis" 28 : 217-225, 2010

      34 Zhang, X., "Facile synthesis of α-Fe2O3 hollow sub-microstructures, morphological control and magnetic properties" 15 : 6184-6190, 2013

      35 Su, M., "Facile synthesis of morphology and size-controlled α-Fe2O3 and Fe3O4 nano-and microstructures by hydrothermal/solvothermal process : the roles of reaction medium and urea dose" 42 : 14793-14804, 2016

      36 Li, F., "Facile regrowth of Mg–Fe2O3 /P–Fe2O3 homojunction photoelectrode for effi cient solar water oxidation" 6 : 13412-13418, 2018

      37 Li, Y., "Facile fabrication of pure α-Fe2O3 nanoparticles via forced hydrolysis using microwave-assisted esterifi cation and their sensing property" 92 : 2188-2191, 2009

      38 Wu, X. K., "Fabrication of porous α-Fe2O3 nanoshuttles and their application for toluene sensors" 26 : 037302-, 2017

      39 Youn, D. H., "Fabrication of graphene-based electrode in less than a minute through hybrid microwave annealing" 4 : 5492-, 2014

      40 Ishaq, S., "Enhancement of water oxidation photocurrent for hematite thin films electrodeposited with polyvinylpyrrolidone" 163 : F1330-F1336, 2016

      41 Kim, J., "Electrolysis ofurea and urine for solar hydrogen" 199 : 2-7, 2013

      42 Fujishima, A., "Electrochemical photolysis of water at a semiconductor electrode" 238 : 37-38, 1972

      43 Taff a, D. H., "Electrochemical deposition of Fe2O3 in the presence of organic additives : a route to enhanced photoactivity" 5 : 103512-103522, 2015

      44 Yu, J., "Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4" 16 : 2163-2169, 2006

      45 Ekwealor, A. B. C., "Effects of precursor concentration on the optical and structural properties of Fe2O3 thin films synthesized in a polymer matrix by chemical bath deposition" 9 : 35-43, 2013

      46 Lupan, O., "Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium" 256 : 1895-1907, 2010

      47 Yilmaza, C., "Effect of Zn(NO3)2 concentration in hydrothermal–electrochemical deposition on morphology and photoelectrochemical properties of ZnO nanorods" 368 : 456-463, 2016

      48 Chaudhari, N. K., "Easy synthesis and characterization of single-crystalline hexagonal prismshaped hematite α-Fe2O3 in aqueous media" 11 : 2264-2267, 2009

      49 Virtanen, S., "Dissolution of thin iron oxide films used as models for iron passive films studied by in situ X-ray absorption near-edge spectroscopy" 144 : 198-204, 1997

      50 Brillet, J., "Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting" 10 : 4155-4160, 2010

      51 Li, L., "Convexnanorods of α-Fe2O3 /CQDs heterojunction photoanode synthesized by a facile hydrothermal method for highly effi cient water oxidation" 42 : 19654-19663, 2017

      52 Mulmudi, H. K., "Controlled growth of hematite (α-Fe2O3) nanorod array on fluorine doped tin oxide : synthesis and photoelectrochemical properties" 13 : 951-954, 2011

      53 Yan, M., "Chlorobenzene formation from fly ash:effect of moisture, chlorine gas, cupric chloride, urea, ammonia, and ammonium sulfate" 29 : 890-896, 2012

      54 Kumari, S., "Characterization of Zn-doped hematite thin films for photoelectrochemical splitting of water" 91 : 1062-1064, 2006

      55 Chiang, C. Y., "Biological templates for antireflective current collectors for photoelectrochemical cell applications" 12 : 6005-6011, 2012

      56 Ng, K. H., "A new method for the fabrication of a bilayer WO3 /Fe2O3 photoelectrode for enhanced photoelectrochemical performance" 98 : 47-52, 2018

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      학술지등록 한글명 : Electronic Materials Letters
      외국어명 : Electronic Materials Letters
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-10-01 평가 등재학술지 선정 (기타) KCI등재
      2011-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2009-12-29 학회명변경 한글명 : 대한금속ㆍ재료학회 -> 대한금속·재료학회 KCI등재후보
      2008-01-01 평가 SCIE 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.68 0.41 1.08
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.89 0.83 0.333 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼