RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      딥러닝을 이용한 시각장애인용 횡단보도 탐지 모델 연구

      한글로보기

      https://www.riss.kr/link?id=A108982392

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Crosswalks play an important role for the safe movement of pedestrians in a complex urban environment. However, for the visually impaired, crosswalks can be a big risk factor. Although assistive tools such as braille blocks and acoustic traffic lights exist for safe walking, poor management can sometimes act as a hindrance to safety. This paper proposes a method to improve accuracy in a deep learning-based real-time crosswalk detection model that can be used in applications for pedestrian assistance for the disabled at the beginning. The image was binarized by utilizing the characteristic that the white line of the crosswalk image contrasts with the road surface, and through this, the crosswalk could be better recognized and the location of the crosswalk could be more accurately identified by using two models that learned the whole and the middle part of the crosswalk, respectively. In addition, it was intended to increase accuracy by creating a boundary box that recognizes crosswalks in two stages: whole and part. Through this method, additional frames that the detection model did not detect in RGB image learning from the crosswalk image could be detected.
      번역하기

      Crosswalks play an important role for the safe movement of pedestrians in a complex urban environment. However, for the visually impaired, crosswalks can be a big risk factor. Although assistive tools such as braille blocks and acoustic traffic lights...

      Crosswalks play an important role for the safe movement of pedestrians in a complex urban environment. However, for the visually impaired, crosswalks can be a big risk factor. Although assistive tools such as braille blocks and acoustic traffic lights exist for safe walking, poor management can sometimes act as a hindrance to safety. This paper proposes a method to improve accuracy in a deep learning-based real-time crosswalk detection model that can be used in applications for pedestrian assistance for the disabled at the beginning. The image was binarized by utilizing the characteristic that the white line of the crosswalk image contrasts with the road surface, and through this, the crosswalk could be better recognized and the location of the crosswalk could be more accurately identified by using two models that learned the whole and the middle part of the crosswalk, respectively. In addition, it was intended to increase accuracy by creating a boundary box that recognizes crosswalks in two stages: whole and part. Through this method, additional frames that the detection model did not detect in RGB image learning from the crosswalk image could be detected.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼