RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Adaptation of Pseudomonas helmanticensis to fat hydrolysates and SDS: fatty acid response and aggregate formation

      한글로보기

      https://www.riss.kr/link?id=A107921256

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      An essential part of designing any biotechnological process is examination of the physiological state of producer cells in different phases of cultivation. The main marker of a bacterial cell’s state is its fatty acid (FA) profile, reflecting membra...

      An essential part of designing any biotechnological process is examination of the physiological state of producer cells in different phases of cultivation. The main marker of a bacterial cell’s state is its fatty acid (FA) profile, reflecting membrane lipid composition. Consideration of FA composition enables assessment of bacterial responses to cultivation conditions and helps biotechnologists understand the most significant factors impacting cellular metabolism. In this work, soil SDS-degrading Pseudomonas helmanticensis was studied at the fatty acid profile level, including analysis of rearrangement between planktonic and aggregated forms. The set of substrates included fat hydrolysates, SDS, and their mixtures with glucose. Such media are useful in bioplastic production since they can help incrementally lower overall costs. Conventional gas chromatography-mass spectrometry was used for FA analysis. Acridine orange-stained aggregates were observed by epifluorescence microscopy. The bacterium was shown to change fatty acid composition in the presence of hydrolyzed fats or SDS. These changes seem to be driven by the depletion of metabolizable substrates in the culture medium.
      Cell aggregation has also been found to be a defense strategy, particularly with anionic surfactant (SDS) exposure.
      It was shown that simple fluidity indices (such as saturated/ unsaturated FA ratios) do not always sufficiently characterize a cell's physiological state, and morphological examination is essential in cases where complex carbon sources are used.

      더보기

      참고문헌 (Reference)

      1 Pathania, A. S., "Utilization of waste frying oil for rhamnolipid production by indigenous Pseudomonas aeruginosa : Improvement through co-substrate optimization" 8 : 104304-, 2020

      2 Yildirim-Aksoya, M., "Use of dietary frass from black soldier fly larvae, Hermetia illucens, in hybrid tilapia (Nile x Mozambique, Oreocromis niloticus x O. mozambique) diets improves growth and resistance to bacterial diseases" 17 : 100373-, 2020

      3 Nyberg, H., "The influence of ionic detergents on the phospholipid fatty acid compositions of Porphyridium purpureum" 24 : 435-440, 1985

      4 O'Leary, W. M., "The fatty acids of bacteria" 26 : 421-447, 1962

      5 Heipieper, H. J., "The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio:biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism" 229 : 1-7, 2003

      6 Chun, C. L., "Solubilization of PAH mixtures by three different anionic surfactants" 118 : 307-313, 2002

      7 Nepomnyashchiy, A., "Soil SDS-degrading bacterium Pseudomonas helmanticensis as a potential producer of polyhydroxyalkanoates" 182-189, 2020

      8 Klebensberger, J., "SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa" 11 : 3073-3086, 2009

      9 Guerin-Mechin, L., "Quaternary ammonium compound stresses induce specific variations in fatty acid composition of Pseudomonas aeruginosa" 55 : 157-159, 2000

      10 Firmansyah, M., "Production of protein hydrolysate containing antioxidant activity from Hermetia illucens" 5 : e02005-, 2019

      1 Pathania, A. S., "Utilization of waste frying oil for rhamnolipid production by indigenous Pseudomonas aeruginosa : Improvement through co-substrate optimization" 8 : 104304-, 2020

      2 Yildirim-Aksoya, M., "Use of dietary frass from black soldier fly larvae, Hermetia illucens, in hybrid tilapia (Nile x Mozambique, Oreocromis niloticus x O. mozambique) diets improves growth and resistance to bacterial diseases" 17 : 100373-, 2020

      3 Nyberg, H., "The influence of ionic detergents on the phospholipid fatty acid compositions of Porphyridium purpureum" 24 : 435-440, 1985

      4 O'Leary, W. M., "The fatty acids of bacteria" 26 : 421-447, 1962

      5 Heipieper, H. J., "The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio:biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism" 229 : 1-7, 2003

      6 Chun, C. L., "Solubilization of PAH mixtures by three different anionic surfactants" 118 : 307-313, 2002

      7 Nepomnyashchiy, A., "Soil SDS-degrading bacterium Pseudomonas helmanticensis as a potential producer of polyhydroxyalkanoates" 182-189, 2020

      8 Klebensberger, J., "SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa" 11 : 3073-3086, 2009

      9 Guerin-Mechin, L., "Quaternary ammonium compound stresses induce specific variations in fatty acid composition of Pseudomonas aeruginosa" 55 : 157-159, 2000

      10 Firmansyah, M., "Production of protein hydrolysate containing antioxidant activity from Hermetia illucens" 5 : e02005-, 2019

      11 Pernicova, I., "Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains" 292 : 122028-, 2019

      12 Fitzgerald, J. W., "Physiological control of alkylsulfatase synthesis in Pseudomonas aeruginosa: effects of glucose, glucose analogs, and sulfur" 23 : 1456-1464, 1977

      13 Pinkart, H. C., "Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains" 179 : 4219-4226, 1997

      14 Carnicero, D., "Octanoic acid uptake in Pseudomonas putida U" 149 : 51-58, 1997

      15 Jovanovic, S., "Microbial production of polyunsaturated fatty acids –high-value ingredients for aquafeed, superfoods, and pharmaceuticals" 69 : 199-211, 2021

      16 Ambily, P. S., "Metabolic profile of sodium dodecyl sulphate(SDS)biodegradation by Pseudomonas aeruginosa(MTCC 10311)" 35 : 827-831, 2014

      17 Junker, F., "Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOTT1E" 181 : 5693-5700, 1999

      18 Jeon, E. Y., "Intracellular transformation rates of fatty acids are influenced by expression of the fatty acid transporter FadL in Escherichia coli cell membrane" 281 : 161-167, 2018

      19 Syakti, A. D., "Influence of growth phase on the phospholipidic fatty acid composition of two marine bacterial strains in pure and mixed cultures" 157 : 479-486, 2006

      20 Poblete-Castro, I., "Industrial biotechnology of Pseudomonas putida and related species" 93 : 2279-2290, 2012

      21 Sgountzos, I. N., "Growth kinetics of Pseudomonas fluorescens in sand beds during biodegradation of phenol" 30 : 164-173, 2006

      22 Li, Y., "Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1" 101 : 6740-6744, 2010

      23 Shishlyannikov, S. M., "Fatty acid trophic markers in Lake Baikal phytoplankton : a comparison of endemic and cosmopolitan diatom-dominated phytoplankton assemblages" 85 : 878-886, 2018

      24 Shanklin, J., "Evidence linking the Pseudomonas oleovorans alkane ω-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family" 545 : 188-192, 2003

      25 Dubois-Brissonnet, F., "Effect of temperature and physiological state on the fatty acid composition of Pseudomonas aeruginosa" 55 : 79-81, 2000

      26 Ganesan, K., "Deep frying cooking oils promote the high risk of metastases in the breast-a critical review" 144 : 111648-, 2020

      27 Guo, J., "Conversion of waste frying palm oil into biodiesel using free lipase A from Candida antarctica as a novel catalyst" 267 : 117323-, 2020

      28 Heipieper, H. J., "Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity" 58 : 1847-1852, 1992

      29 Janse, J. D., "Classification of fluorescent soft rot Pseudomonas bacteria, including P. marginalis strains, using whole cell fatty acid analysis" 15 : 538-553, 1992

      30 Weber, F. J., "Cis/trans isomerization of fatty acids as a defence mechanism of Pseudomonas putida strains to toxic concentrations of toluene" 140 : 2013-2017, 1994

      31 Mrozik, A., "Changes in whole cell-derived fatty acids induced by naphthalene in bacteria from genus Pseudomonas" 159 : 87-95, 2004

      32 Kim, I. S., "Changes in membrane fluidity and fatty acid composition of Pseudomonas putida CNT19 in response to toluene" 66 : 1945-1950, 2002

      33 Ben Ghorbal, S. K., "Changes in membrane fatty acid composition of Pseudomonas aeruginosa in response to UV-C radiations" 67 : 112-117, 2013

      34 Doumenq, P., "Changes in fatty acids of Pseudomonas nautica, a marine denitrifying bacterium, in response to n-eicosane as carbon source and various culture conditions" 28 : 151-161, 1999

      35 Mrozik, A., "Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation" 160 : 149-157, 2005

      36 Moss, C. W., "Cellular fatty acid composition of selected Pseudomonas species" 24 : 596-598, 1972

      37 Klebensberger, J., "Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate" 185 : 417-427, 2006

      38 Collier, D. N., "Catabolite repression control in the Pseudomonads" 147 : 551-561, 1996

      39 Li, S., "Analysis of polycyclic aromatic hydrocarbons in cooking oil fumes" 49 : 119-122, 1994

      40 Sun, Y., "Analysis of PAHs in oily systems using modified QuEChERS with EMR-Lipid clean-up followed by GCQqQ-MS" 109 : 106950-, 2020

      41 Hayashi, K., "A rapid determination of sodium dodecyl sulfate with methylene blue" 67 : 503-506, 1975

      42 Nair, A. V., "A comparative study of coastal and clinical isolates of Pseudomonas aeruginosa" 46 : 725-734, 2015

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-12-02 학술지명변경 외국어명 : The Journal of Microbiology -> Journal of Microbiology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.76 0.2 1.22
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.91 0.73 0.399 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼