Let R be a ring with characteristic different from 2. An additive mapping F : R → R is called a generalized derivation on R if there exists a derivation d : R → R such that F(xy) = F(x)y + xd(y) holds for all x, y ∈ R. In the pres...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107610765
2021
English
SCOPUS,KCI등재,ESCI
학술저널
229-238(10쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
Let R be a ring with characteristic different from 2. An additive mapping F : R → R is called a generalized derivation on R if there exists a derivation d : R → R such that F(xy) = F(x)y + xd(y) holds for all x, y ∈ R. In the pres...
Let R be a ring with characteristic different from 2. An additive mapping F : R → R is called a generalized derivation on R if there exists a derivation d : R → R such that F(xy) = F(x)y + xd(y) holds for all x, y ∈ R. In the present paper, we show that if R is a prime ring satisfying certain identities involving a generalized derivation F associated with a derivation d, then R becomes commutative and in some cases d comes out to be zero (i.e., F becomes a left centralizer). We provide some counter examples to justify that the restrictions imposed in the hypotheses of our theorems are not superfluous.
THE WOVEN FRAME OF MULTIPLIERS IN HILBERT C* -MODULES
HYPERSTABILITY CRITERION FOR A NEW TYPE OF 2-VARIABLE RADICAL FUNCTIONAL EQUATIONS
VARIABLE SUM EXDEG INDICES OF CACTUS GRAPHS
SYMMETRICITY AND REVERSIBILITY FROM THE PERSPECTIVE OF NILPOTENTS