RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      딥러닝 기반 비침입 부하 모니터링 프레임워크에서의 LSTNet 응용 = An Application of LSTNet in Deep Learning-based Non-intrusive Load Monitoring Framework

      한글로보기

      https://www.riss.kr/link?id=A107957586

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this study, a process of measuring and preprocessing power data for 4 types of home appliances and a deep training-based NILM technique were proposed. Active power of 4 types of home appliances (refrigerator, induction, TV, washer) was measured for about 3 weeks. The power data of each home appliance was measured to be aggregated in a smart meter. In order to disaggregate energy using LSTNet, four types of home appliances and smart meter power data were constructed as a training dataset. In the training process, we performed a parametric study to extract the optimal hyperparameter with the highest validation accuracy metric among the major parameters of LSTNet to verify the feasibility of NILM application of LSTNet.
      번역하기

      In this study, a process of measuring and preprocessing power data for 4 types of home appliances and a deep training-based NILM technique were proposed. Active power of 4 types of home appliances (refrigerator, induction, TV, washer) was measured for...

      In this study, a process of measuring and preprocessing power data for 4 types of home appliances and a deep training-based NILM technique were proposed. Active power of 4 types of home appliances (refrigerator, induction, TV, washer) was measured for about 3 weeks. The power data of each home appliance was measured to be aggregated in a smart meter. In order to disaggregate energy using LSTNet, four types of home appliances and smart meter power data were constructed as a training dataset. In the training process, we performed a parametric study to extract the optimal hyperparameter with the highest validation accuracy metric among the major parameters of LSTNet to verify the feasibility of NILM application of LSTNet.

      더보기

      참고문헌 (Reference)

      1 김임규, "다수 가전기기 유효전력의 스팩토그램 분석 및 LSTM기반의 전력 분해 알고리즘" 한국융합학회 12 (12): 21-28, 2021

      2 Murray, D., "Transferability of neural network approaches for low-rate energy disaggregation" 8330-8334, 2019

      3 Ibrahim, M., "Smart sustainable cities roadmap : Readiness for transformation towards urban sustainability" 37 : 530-540, 2018

      4 Janik, A., "Scientific landscape of smart and sustainable cities literature : A bibliometric analysis" 12 (12): 779-, 2020

      5 Butterworth, S., "On the theory of filter amplifiers" 7 (7): 536-541, 1930

      6 Hart, G. W., "Nonintrusive appliance load monitoring" 80 (80): 1870-1891, 1992

      7 Çavdar, İ.H, "New design of a supervised energy disaggregation model based on the deep neural network for a smart grid" 12 (12): 1217-, 2019

      8 Lai, G., "Modeling long-and short-term temporal patterns with deep neural networks" 95-104, 2018

      9 Bonfigli, R., "Machine training approaches to non-intrusive load monitoring" Springer 31-90, 2020

      10 Hazas, M., "Look back before leaping forward : Four decades of domestic energy inquiry" 10 (10): 13-19, 2011

      1 김임규, "다수 가전기기 유효전력의 스팩토그램 분석 및 LSTM기반의 전력 분해 알고리즘" 한국융합학회 12 (12): 21-28, 2021

      2 Murray, D., "Transferability of neural network approaches for low-rate energy disaggregation" 8330-8334, 2019

      3 Ibrahim, M., "Smart sustainable cities roadmap : Readiness for transformation towards urban sustainability" 37 : 530-540, 2018

      4 Janik, A., "Scientific landscape of smart and sustainable cities literature : A bibliometric analysis" 12 (12): 779-, 2020

      5 Butterworth, S., "On the theory of filter amplifiers" 7 (7): 536-541, 1930

      6 Hart, G. W., "Nonintrusive appliance load monitoring" 80 (80): 1870-1891, 1992

      7 Çavdar, İ.H, "New design of a supervised energy disaggregation model based on the deep neural network for a smart grid" 12 (12): 1217-, 2019

      8 Lai, G., "Modeling long-and short-term temporal patterns with deep neural networks" 95-104, 2018

      9 Bonfigli, R., "Machine training approaches to non-intrusive load monitoring" Springer 31-90, 2020

      10 Hazas, M., "Look back before leaping forward : Four decades of domestic energy inquiry" 10 (10): 13-19, 2011

      11 Hochreiter, S., "Long short-term memory" 9 (9): 1735-1780, 1997

      12 Armel, K. C., "Is disaggregation the holy grail of energy efficiency? The case of electricity" 52 : 213-234, 2013

      13 Bilski, P., "Generalized algorithm for the non-intrusive identification of electrical appliances in the household" 2 : 730-735, 2017

      14 Gopinath, R., "Energy management using non-intrusive load monitoring techniques-state-of-the-art and future research directions" 62 : 102411-, 2020

      15 Schirmer, P. A., "Energy disaggregation using two-stage fusion of binary device detectors" 13 (13): 2148-, 2020

      16 Chung, J., "Empirical evaluation of gated recurrent neural networks on sequence modeling"

      17 Kim, Y., "Electrical event identification technique for monitoring home appliance load using load signatures" 296-297, 2014

      18 Garcia, F. C. C., "Development of an intelligent system for smart home energy disaggregation using stacked denoising autoencoders" 105 : 248-255, 2017

      19 Huovila, P., "Buildings and climate change: Status, challenges, and opportunities"

      20 Salem, H., "Artificial Intelligence Techniques for a Scalable Energy Transition" Springer 109-131, 2020

      21 Assan, T., "An empirical investigation of VI trajectory based load signatures for non-intrusive load monitoring" 5 (5): 870-878, 2013

      22 Elma, O., "A survey of a residential load profile for demand side management systems" 85-89, 2017

      23 Kolter, J. Z., "A public data set for energy disaggregation research" 25 : 59-62, 2011

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2013-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2012-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2010-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.4 0.4 0.36
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.31 0.26 0.651 0.09
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼