퇴적물 내에서 가스 하이드레이트(gas hydrate, GH) 부존 가능성을 파악하기 위해서는 획득된 코어 시료의 광물 조성을 아는 것이 필수적이다. GH 탐사를 진행하며 채취된 울릉분지 코어 시료에...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A109201815
2024
-
가스 하이드레이트 ; XRD ; 광물 조성 ; 기계학습 ; Gas hydrate ; Mineral composition ; Machine learning
400
KCI등재
학술저널
23-34(12쪽)
0
상세조회0
다운로드국문 초록 (Abstract)
퇴적물 내에서 가스 하이드레이트(gas hydrate, GH) 부존 가능성을 파악하기 위해서는 획득된 코어 시료의 광물 조성을 아는 것이 필수적이다. GH 탐사를 진행하며 채취된 울릉분지 코어 시료에...
퇴적물 내에서 가스 하이드레이트(gas hydrate, GH) 부존 가능성을 파악하기 위해서는 획득된 코어 시료의 광물 조성을 아는 것이 필수적이다. GH 탐사를 진행하며 채취된 울릉분지 코어 시료에서 각 시료 별 488개의 X선 회절 분석(X-ray diffraction, XRD)을 활용하여 광물 조성 값을 확보하였다. 488개의 학습 자료를 기반으로 입력값을 3100개의 XRD 피크 세기로 출력값을 12개의 광물 조성으로 기계학습을 수행하였다. 488개의 데이터를 307개의 학습자료, 132개의 검증자료, 49개의 테스트 자료로 나누어 학습을 수행하였고 랜덤 포레스트(random forest, RF) 알고리즘을 활용하여 결과를 획득하였다. 학습 결과 전문가가 예측한 광물 조성과 기계학습을 통해 예측한 값의 차이인 평균 절대 오차(mean absolute error, MAE)가 1.35%로 확인되었다. 개발된 모델 성능의 개선을 위해 주성분분석(principal component analysis, PCA)을 활용하여 XRD 피크의 핵심 특징을 추출하여 입력자료의 차원을 줄여 추가적으로 기계학습을 수행한 결과 MAE 값이 최대 1.23%까지 감소하는 것을 볼 수 있었고 시간적인 측면에서 학습 효율도 향상된 것을 확인할 수 있었다.
다국어 초록 (Multilingual Abstract)
It is essential to know the mineral composition of core samples to assess the possibility of gas hydrate (GH) in sediments. During the exploration of gas hydrates (GH), mineral composition values were obtained from each core sample collected in the Ul...
It is essential to know the mineral composition of core samples to assess the possibility of gas hydrate (GH) in sediments. During the exploration of gas hydrates (GH), mineral composition values were obtained from each core sample collected in the Ulleung Basin using X-ray diffraction (XRD). Based on this data, machine learning was performed with 3100 input values representing XRD peak intensities and 12 output values representing mineral compositions. The 488 data points were divided into 307 training samples, 132 validation samples, and 49 test samples. The random forest (RF) algorithm was utilized to obtain results. The machine learning results, compared with expert-predicted mineral compositions, revealed a Mean Absolute Error (MAE) of 1.35%. To enhance the performance of the developed model, principal component analysis (PCA) was employed to extract the key features of XRD peaks, reducing the dimensionality of input data. Subsequent machine learning with the refined data resulted in a decreased MAE, reaching a maximum of 1.23%. Additionally, the efficiency of the learning process improved over time, as confirmed from a temporal perspective.
서태평양 마젤란 해산 KC-7 정상부 퇴적물의 광물 분석을 통한 고퇴적 환경 해석
페루 아뿌리막 반암동 광화대내 라스 밤바스 구리 광산의 지질과 광화작용
Ca-함유 광물에 대한 제1원리 K-edge 흡수 스펙트럼 계산