1 V. Gulshan, "Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus PhotographsAccuracy of a Deep Learning Algorithm for Detection of Diabetic RetinopathyAccuracy of a Deep Learning Algorithm for Detection of Diabetic Retinopathy", pp . 2402 ? 2410 . ISSN : 0098-7484 ., 2016
2 C. Szegedy, "Going deeper with convolutions", pp . 1 ? 9 . DOI : 10.1109/CVPR.2015.7298594 ., 2015
3 K.K . Maninis, "Deep Retinal Image Understanding", 2016
4 Adam Paszke, "Automatic Differentiation in PyTorch", 2017
5 G. Huang, "Densely Connected Convolutional Networks", pp . 2261 ? 2269 . DOI : 10.1109/CVPR . 2017.243 ., 2017
6 F. Pedregosa, "Scikit-learn : Machine Learning in Python", 12 (pp . 2825 ? 2830, 2011
7 Tsung-Yi Lin, "Microsoft COCO : Common Objects in Context", 2014
8 K. He, "Deep Residual Learning for Image Recognition", pp . 770 ? 778, 2016
9 B. Hariharan, "Semantic contours from inverse detectors ”", pp . 991 ? 998, 2011
10 Jun Fu, "Dual Attention Network for Scene Segmentation", pp . 3146 ? 3154, 2019
1 V. Gulshan, "Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus PhotographsAccuracy of a Deep Learning Algorithm for Detection of Diabetic RetinopathyAccuracy of a Deep Learning Algorithm for Detection of Diabetic Retinopathy", pp . 2402 ? 2410 . ISSN : 0098-7484 ., 2016
2 C. Szegedy, "Going deeper with convolutions", pp . 1 ? 9 . DOI : 10.1109/CVPR.2015.7298594 ., 2015
3 K.K . Maninis, "Deep Retinal Image Understanding", 2016
4 Adam Paszke, "Automatic Differentiation in PyTorch", 2017
5 G. Huang, "Densely Connected Convolutional Networks", pp . 2261 ? 2269 . DOI : 10.1109/CVPR . 2017.243 ., 2017
6 F. Pedregosa, "Scikit-learn : Machine Learning in Python", 12 (pp . 2825 ? 2830, 2011
7 Tsung-Yi Lin, "Microsoft COCO : Common Objects in Context", 2014
8 K. He, "Deep Residual Learning for Image Recognition", pp . 770 ? 778, 2016
9 B. Hariharan, "Semantic contours from inverse detectors ”", pp . 991 ? 998, 2011
10 Jun Fu, "Dual Attention Network for Scene Segmentation", pp . 3146 ? 3154, 2019
11 T. Y. Lin, "Feature Pyramid Networks for Object Detection", pp . 936 ? 944 ., 2017
12 X. Zhang, "Fast Semantic Segmentation for Scene Perception", pp . 1183 ? 1192, 2019
13 Hanchao Li, "Pyramid Attention Network for Semantic Segmentation", p. 285, 2018
14 Y. Lecun, "Gradient-based learning applied to document recognition", pp . 2278 ? 2324 . DOI : 10.1109/5.726791 ., 1998
15 C. Szegedy, "Rethinking the Inception Architecture for Computer Vision", pp . 2818 ? 2826, 2016
16 M. A. Islam, "Gated Feedback Refinement Network for Dense Image Labeling", pp . 4877 ? 4885, 2017
17 J. Staal, "Ridge-based vessel segmentation in color images of the retina", pp . 501 ? 509 . ISSN : 0278-0062 . DOI : 10.1109/ TMI.2004.825627 ., 2004
18 M. Cordts, "The Cityscapes Dataset for Semantic Urban Scene Understanding", pp . 3213 ? 3223, 2016
19 F. Chollet, "Xception : Deep learning with depthwise separable convolutions", pp . 1800 ? 1807 ., 2017
20 G. Lin, "RefineNet : Multi-Path Refinement Networks for Dense Prediction", pp . 1 ? 1, 2019
21 M. Everingham, "The PASCAL Visual Object Classes Challenge 2012 ( VOC2012 ) Results", 2012
22 Martin Abadi, "TensorFlow : Large-Scale Machine Learning on Heterogeneous Systems .", 2015
23 Z. Wang, "Zoom-in-Net : Deep Mining Lesions for Diabetic Retinopathy Detection", pp . 267 ? 275 . ISBN : 978-3-319-66179-7 ., 2017
24 Y. Chen, "Diabetic Retinopathy Detection Based on Deep Convolutional Neural Networks", pp . 1030 ? 1034 . DOI : 10.1109/ICASSP.2018.8461427 ., 2018
25 Wang Zhe, "Learnable Histogram : Statistical Context Features for Deep Neural Networks", pp . 246 ? 262, 2016
26 Changqian Yu, "BiSeNet : Bilateral Segmentation Network for Real-Time Semantic Segmentation", pp . 334 ? 349 . ISBN : 978-3-030-01261-8 ., 2018
27 S.Wang, "Localizing Microaneurysms in Fundus Images Through Singular Spectrum Analysis", pp . 990 ? 1002 . ISSN : 1558-2531 ., 2017
28 Y. Li, "Occlusion Aware Facial Expression Recognition Using CNN With Attention Mechanism", pp . 2439 ? 2450 . ISSN : 1057-7149 . DOI : 10.1109/TIP.2018.2886767 ., 2019
29 Liang-Chieh Chen, "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation", pp . 833 ? 851 . ISBN : 978-3-030-01234-2 ., 2018
30 F. Lin, "Facial Expression Recognition with Data Augmentation and Compact Feature Learning", pp . 1957 ? 1961 . DOI : 10.1109/ICIP.2018.8451039 ., 2018
31 Shuangling Wang, "Hierarchical retinal blood vessel segmentation based on feature and ensemble learning", 149 (pp . 708 ? 717 . ISSN : 0925-2312 . DOI : https : //doi.org/10.1016/j.neucom.2014.07.059 ., 2015
32 J. Sahlsten, "Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading", p. 10750 . ISSN : 2045-2322 . DOI : 10.1038/s41598-019-47181-w. URL : https : //doi.org/10.1038/s41598-019-47181-w ., 2019
33 Sara Moccia, "Blood vessel segmentation algorithms ? Review of methods , datasets and evaluation metrics", 158 (pp . 71 ? 91 . ISSN : 0169-2607 . DOI : https : //doi.org/10.1016/j.cmpb.2018.02.001 ., 2018
34 Zhexin Jiang, "Retinal blood vessel segmentation using fully convolutional network with transfer learning", 68 (pp . 1 ? 15 . ISSN : 0895-6111 . DOI : https : //doi.org/10.1016/j.compmedimag.2018.04.005 ., 2018
35 Q . He, "Multi-Label Classification Scheme Based on Local Regression for Retinal Vessel Segmentation", pp . 2765 ? 2769 . DOI : 10.1109/ICIP.2018.8451415 ., 2018
36 T. H. N. Le, "Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation", pp . 2393 ? 2407 ., 2018
37 Chensi Cao, "Deep Learning and Its Applications in BiomedicineIn : Genomics , Proteomics & Bioinformatics 16.1", pp . 17 ? 32 . ISSN : 1672-0229 ., 2018
38 L. Zhou, "Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images", pp . 563 ? 571 . ISSN : 1751-9659 ., 2018
39 M. Wu, "Weight-Adapted Convolution Neural Network for Facial Expression Recognition in Human-Robot Interaction", pp . 1 ? 12 . ISSN : 2168-2216 . DOI : 10.1109/TSMC.2019.2897330 ., 2019
40 Zhi Tian, "Decoders Matter for Semantic Segmentation : Data-Dependent Decoding Enables Flexible Feature Aggregation", pp . 3126 ? 3135, 2019
41 Marin Orsic, "In Defense of Pre-Trained ImageNet Architectures for Real-Time Semantic Segmentation of Road-Driving Images", pp . 12607 ? 12616, 2019
42 P. Lucey, "The Extended Cohn-Kanade Dataset ( CK+ ) : A complete dataset for action unit and emotion-specified expression", pp . 94 ? 101 . DOI : 10.1109/CVPRW . 2010.5543262 ., 2010
43 H. Zhang, "Context Encoding for Semantic SegmentationIn : 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition", pp . 7151 ? 7160, 2018
44 P. Junjun, "Diabetic Retinopathy Detection Based on Deep Convolutional Neural Networks for Localization of Discriminative Regions", pp . 46 ? 52 . DOI : 10.1109/ICVRV.2018.00016 ., 2018
45 Cam-Hao Hua, "Bimodal Learning via Trilogy of Skip-connection Deep Networks for Diabetic Retinopathy Risk Progression Identification", ISSN : 1386-5056 . DOI : https : //doi.org/10.1016/j.ijmedinf.2019.07 . 005 ., 2019
46 M. Yang, "DenseASPP for Semantic Segmentation in Street ScenesIn : 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition", pp . 3684 ? 3692, 2018
47 P. Wang, "Understanding Convolution for Semantic SegmentationIn : 2018 IEEE Winter Conference on Applications of Computer Vision ( WACV )", pp . 1451 ? 1460, 2018
48 Y . He, "Segmenting Diabetic Retinopathy Lesions in Multispectral Images Using Low- Dimensional Spatial-Spectral Matrix Representation ”", pp . 493 ? 502, 2020
49 Stela Vujosevic, "EARLY MICROVASCULAR AND NEURAL CHANGES IN PATIENTS WITH TYPE 1 AND TYPE 2 DIABETES MELLITUS WITHOUT CLINICAL SIGNS OF DIABETIC RETINOPATHY", pp . 435 ? 445 ., 2019
50 C. Yu, "Learning a Discriminative Feature Network for Semantic SegmentationIn : 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition", pp . 1857 ? 1866, 2018
51 D. Acharya, "Covariance Pooling for Facial Expression RecognitionIn : 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops ( CVPRW )", pp . 480 ? 4807 . DOI : 10.1109/CVPRW.2018.00077 ., 2018
52 T. Wu, "Tree-Structured Kronecker Convolutional Network for Semantic SegmentationIn : 2019 IEEE International Conference on Multimedia and Expo ( ICME )", pp . 940 ? 945 ., 2019
53 L. Chen, "SCA-CNN : Spatial and Channel-Wise Attention in Convolutional Networks for Image CaptioningIn : 2017 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR )", pp . 6298 ? 6306, 2017
54 L. C. Chen, "DeepLab : Semantic Image Segmentation with Deep Convolutional Nets , Atrous Convolution , and Fully Connected CRFsIn : IEEE Transactions on Pattern Analysis and Machine Intelligence 40.4", pp . 834 ? 848, 2018