RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      ARIMA와 VAR·VEC 모형에 의한 부산항 물동량 예측과 관련성연구 = Study on the Forecasting and Relationship of Busan Cargo by ARIMA and VAR·VEC

      한글로보기

      https://www.riss.kr/link?id=A106594032

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      세계적인 장기경기침체 속에서 보다 정확한 물동량 예측은 항만정책 수행에 중요하다. 따라서, 본 연구에서는 부산항 컨테이너 물동량(수출입화물과 환적화물)을 단변량 모형인 ARIMA 뿐만 아니라 인과관계가 있을 것으로 예상되는 경제규모(한국, 중국, 미국의 국내총생산), 금리수준 그리고 경기변동을 고려한 벡터자기회귀모형과 벡터오차수정모형을 활용하여 추정하고 비교하였다. 측정자료는 2014년 1월부터 2019년 8월까지 월별 부산항 컨테이너 물동량이다. 분석결과에 의하면, 수출입물동량 시계열은 비교적 안정적(stationary)이어서 VAR에 의해 추정하였고 환적화물은 불안정적(non-stationary)하지만, 경제규모, 금리 및 경기변동과 공적분(장기적인 균형관계)를 띠고 있어 VEC모형으로 추정하였다. 추정결과, 안정적인 수출입화물 추정에서는 단변량 모형인 ARIMA가 우수하고 추세가 있는 환적화물은 다변량모형인 VEC모형이 보다 예측력이 우수한 것으로 나타나고 있다. 특히 수출입화물은 우리나라 경제규모와 관련이 있고, 환적화물은 중국과 미국 경제규모와 밀접한 관련이 있다. 또한 중국 경제규모가 미국에 비하여 더 밀접하게 나타나고 있어 환적화물 증대전략에 시사점을 주고 있다.
      번역하기

      세계적인 장기경기침체 속에서 보다 정확한 물동량 예측은 항만정책 수행에 중요하다. 따라서, 본 연구에서는 부산항 컨테이너 물동량(수출입화물과 환적화물)을 단변량 모형인 ARIMA 뿐만 ...

      세계적인 장기경기침체 속에서 보다 정확한 물동량 예측은 항만정책 수행에 중요하다. 따라서, 본 연구에서는 부산항 컨테이너 물동량(수출입화물과 환적화물)을 단변량 모형인 ARIMA 뿐만 아니라 인과관계가 있을 것으로 예상되는 경제규모(한국, 중국, 미국의 국내총생산), 금리수준 그리고 경기변동을 고려한 벡터자기회귀모형과 벡터오차수정모형을 활용하여 추정하고 비교하였다. 측정자료는 2014년 1월부터 2019년 8월까지 월별 부산항 컨테이너 물동량이다. 분석결과에 의하면, 수출입물동량 시계열은 비교적 안정적(stationary)이어서 VAR에 의해 추정하였고 환적화물은 불안정적(non-stationary)하지만, 경제규모, 금리 및 경기변동과 공적분(장기적인 균형관계)를 띠고 있어 VEC모형으로 추정하였다. 추정결과, 안정적인 수출입화물 추정에서는 단변량 모형인 ARIMA가 우수하고 추세가 있는 환적화물은 다변량모형인 VEC모형이 보다 예측력이 우수한 것으로 나타나고 있다. 특히 수출입화물은 우리나라 경제규모와 관련이 있고, 환적화물은 중국과 미국 경제규모와 밀접한 관련이 있다. 또한 중국 경제규모가 미국에 비하여 더 밀접하게 나타나고 있어 환적화물 증대전략에 시사점을 주고 있다.

      더보기

      다국어 초록 (Multilingual Abstract)

      More accurate forecasting of port cargo in the global long-term recession is critical for the implementation of port policy. In this study, the Busan Port container volume (export cargo and transshipment cargo) was estimated using the Vector Autoregressive (VAR) model and the vector error correction (VEC) model considering the causal relationship between the economic scale (GDP) of Korea, China, and the U.S. as well as ARIMA, a single volume model. The measurement data was the monthly volume of container shipments at the Busan port January 2014-August 2019. According to the analysis, the time series of import and export volume was estimated by VAR because it was relatively stable, and transshipment cargo was non-stationary, but it has cointegration relationship (long-term equilibrium) with economic scale, interest rate, and economic fluctuation, so estimated by the VEC model. The estimation results show that ARIMA is superior in the stationary time-series data (local cargo) and transshipment cargo with a trend are more predictable in estimating by the multivariate model, the VEC model. Import-export cargo, in particular, is closely related to the size of our country's economy, and transshipment cargo is closely related to the size of the Chinese and American economies. It also suggests a strategy to increase transshipment cargo as the size of China's economy appears to be closer than that of the U.S.
      번역하기

      More accurate forecasting of port cargo in the global long-term recession is critical for the implementation of port policy. In this study, the Busan Port container volume (export cargo and transshipment cargo) was estimated using the Vector Autoregre...

      More accurate forecasting of port cargo in the global long-term recession is critical for the implementation of port policy. In this study, the Busan Port container volume (export cargo and transshipment cargo) was estimated using the Vector Autoregressive (VAR) model and the vector error correction (VEC) model considering the causal relationship between the economic scale (GDP) of Korea, China, and the U.S. as well as ARIMA, a single volume model. The measurement data was the monthly volume of container shipments at the Busan port January 2014-August 2019. According to the analysis, the time series of import and export volume was estimated by VAR because it was relatively stable, and transshipment cargo was non-stationary, but it has cointegration relationship (long-term equilibrium) with economic scale, interest rate, and economic fluctuation, so estimated by the VEC model. The estimation results show that ARIMA is superior in the stationary time-series data (local cargo) and transshipment cargo with a trend are more predictable in estimating by the multivariate model, the VEC model. Import-export cargo, in particular, is closely related to the size of our country's economy, and transshipment cargo is closely related to the size of the Chinese and American economies. It also suggests a strategy to increase transshipment cargo as the size of China's economy appears to be closer than that of the U.S.

      더보기

      참고문헌 (Reference)

      1 신창훈, "하이브리드 ARIMA-신경망 모델을 통한 컨테이너물동량 예측에 관한 연구" 한국항해항만학회 32 (32): 81-88, 2008

      2 전찬영, "인공신경망모형의 항만물동량 예측 적용에 관한 연구" 한국해운물류학회 (53) : 65-82, 2007

      3 박성영, "신경망을 이용한 컨테이너 물동량 예측에 관한 연구" 한국항해항만학회 26 (26): 183-188, 2002

      4 김정훈, "시계열 모형을 이용한 광양항의 컨테이너 물동량 및 교통량 예측" 한국항해항만학회 32 (32): 425-431, 2008

      5 정상국, "국제유가의 변화가 건화물선 운임에 미치는 영향과 건화물선 운임간의 상관관계에 관한 연구" 한국항만경제학회 27 (27): 217-240, 2011

      6 이성윤, "VECM에 의한 BDI 예측과 영향요인에 관한 실증연구" 한국항해항만학회 42 (42): 546-554, 2018

      7 Box, G. E. P., "Time series Analysis Forecasting and control"

      8 Drewry, "Global Container Terminal Operators Annual Review and Forecast 2018"

      9 Chun, C. Y, "An Characteristic Analysis of the Dry Bulk Market by Structural VAR Model" 12 : 185-203, 1997

      1 신창훈, "하이브리드 ARIMA-신경망 모델을 통한 컨테이너물동량 예측에 관한 연구" 한국항해항만학회 32 (32): 81-88, 2008

      2 전찬영, "인공신경망모형의 항만물동량 예측 적용에 관한 연구" 한국해운물류학회 (53) : 65-82, 2007

      3 박성영, "신경망을 이용한 컨테이너 물동량 예측에 관한 연구" 한국항해항만학회 26 (26): 183-188, 2002

      4 김정훈, "시계열 모형을 이용한 광양항의 컨테이너 물동량 및 교통량 예측" 한국항해항만학회 32 (32): 425-431, 2008

      5 정상국, "국제유가의 변화가 건화물선 운임에 미치는 영향과 건화물선 운임간의 상관관계에 관한 연구" 한국항만경제학회 27 (27): 217-240, 2011

      6 이성윤, "VECM에 의한 BDI 예측과 영향요인에 관한 실증연구" 한국항해항만학회 42 (42): 546-554, 2018

      7 Box, G. E. P., "Time series Analysis Forecasting and control"

      8 Drewry, "Global Container Terminal Operators Annual Review and Forecast 2018"

      9 Chun, C. Y, "An Characteristic Analysis of the Dry Bulk Market by Structural VAR Model" 12 : 185-203, 1997

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2001-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.52 0.52 0.48
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.44 0.4 0.685 0.16
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼