Radical pimers are the simplest and most important models for studying charge‐transfer processes and provide deep insight into π‐stacked organic materials. Notably, radical pimer systems with magnetic bi‐ or multistability may have important ap...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=O112388565
2020년
-
1433-7851
1521-3773
SCI;SCIE;SCOPUS
학술저널
14040-14043 [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
Radical pimers are the simplest and most important models for studying charge‐transfer processes and provide deep insight into π‐stacked organic materials. Notably, radical pimer systems with magnetic bi‐ or multistability may have important ap...
Radical pimers are the simplest and most important models for studying charge‐transfer processes and provide deep insight into π‐stacked organic materials. Notably, radical pimer systems with magnetic bi‐ or multistability may have important applications in switchable materials, thermal sensors, and information‐storage media. However, no such systems have been reported. Herein, we describe a new pimer consisting of neutral N‐(n‐propyl) benzene triimide ([BTI‐3C]) and its anionic radical ([BTI‐3C]−.) that exhibits rare magnetic multistability. The crystalline pimer was readily synthesized by reduction of BTI‐3C with cobaltocene (CoCp2). The transition occurred with a thermal hysteresis loop that was 27 K wide in the range of 170–220 K, accompanied by a smaller loop with a width of 25 K at 220–242 K. The magnetic multistability was attributed to slippage of the π‐stacked BTI structures and entropy‐driven conformational isomerization of the side propyl chains in the crystalline state during temperature variation.
Slipping into place: An anion‐radical pimer consisting of neutral N‐(n‐propyl) benzene triimide and its anionic‐radical counterpart has been developed that shows rare magnetic multistability. The magnetic multistability was attributed to slippage of the π‐stacked units and conformational isomerization of the propyl side chains during temperature variation (see picture).