RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      A multiscale modeling method incorporating spatial coupling and temporal coupling into transient simulations of the human airways

      한글로보기

      https://www.riss.kr/link?id=O110217341

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this article, a novel multiscale modeling method is proposed for transient computational fluid dynamics (CFD) simulations of the human airways. The developed method is the first attempt to incorporate spatial coupling and temporal coupling into tra...

      In this article, a novel multiscale modeling method is proposed for transient computational fluid dynamics (CFD) simulations of the human airways. The developed method is the first attempt to incorporate spatial coupling and temporal coupling into transient human airway simulations, aiming to improve the flexibility and the efficiency of these simulations. In this method, domain decomposition was used to separate the complex airway model into different scaled domains. Each scaled domain could adopt a suitable mesh and timestep, as necessary: the coarse mesh and large timestep were employed in the macro regions to reduce the computational cost, while the fine mesh and small timestep were used in micro regions to maintain the simulation accuracy. The radial point interpolation method was used to couple data between the coarse mesh and the fine mesh. The continuous micro solution–intermittent temporal coupling method was applied to bridge different timesteps. The developed method was benchmarked using a well‐studied four‐generation symmetric airway model under realistic normal breath conditions. The accuracy and efficiency of the method were verified separately in the inhalation phase and the exhalation phase. Similar airflow behavior to previous studies was observed from the multiscale airway model. The developed multiscale method has the potential to improve the flexibility and efficiency of transient human airway simulations without sacrificing accuracy.





      This method is the first attempt to separate the complex airway model into different scaled domains employing suitable mesh and timesteps. In this method, spatial and temporal coupling methods are incorporated into transient airway simulations. The developed multiscale airway model is verified with benchmarks under a realistic breath condition, providing that the method is capable to increase the flexibility and efficiency of the human airway simulations without scarifying the simulation accuracy.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼