RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Developing neuroimaging biomarker for sustained experimental and clinical pain

      한글로보기

      https://www.riss.kr/link?id=T16646467

      • 저자
      • 발행사항

        Seoul : Sungkyunkwan University, 2023

      • 학위논문사항
      • 발행연도

        2023

      • 작성언어

        영어

      • 주제어

        painbrainfMRIbiomarkernetwork

      • 발행국(도시)

        서울

      • 기타서명

        실험적 및 임상적 만성 통증에 대한 뇌 영상 표지자 개발

      • 형태사항

        vi, 204 p. : ill., charts ; 30 cm

      • 일반주기명

        Advisor: Choong-Wan Woo
        Includes bibliographical reference(p. 190-202)

      • UCI식별코드

        I804:11040-000000172447

      • DOI식별코드
      • 소장기관
        • 성균관대학교 삼성학술정보관 소장기관정보
        • 성균관대학교 중앙학술정보관 소장기관정보
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Understanding neurobiological mechanisms of pain has enormous implications for basic science and clinical practices. However, the subjectivity and ambiguity of the measurement of pain have hampered its progress. This dissertation presents a series of attempts to develop brain-based biomarkers that can quantitatively and objectively measure subjective pain using functional magnetic resonance imaging (fMRI), with particular focus on the sustained pain which is a hallmark of clinical pain disorders. In Chapter 1, we reviewed the emergence of predictive modeling and graph-theoretical approach from the history of pain research, and highlighted the translational potential of experimentally-induced sustained pain. In Chapter 2 and 3, we introduced the actual application of these approaches based on fMRI data. In the Chapter 2, we used whole-brain functional connectivity to develop a biomarker that can predict ongoing sustained pain induced by orofacial capsaicin. This biomarker not only showed high sensitivity and specificity across multiple capsaicin pain fMRI datasets but also could be generalized onto clinical back pain fMRI datasets as well, suggesting the shared neural mechanisms across sustained experimental and clinical pain. In the Chapter 3, we used graph-theoretical analyses to examine how functional brain architecture was reconfigured over the experience of sustained pain induced by orofacial capsaicin. The characteristic features of dynamic brain reconfiguration were then used to develop biomarkers predictive of sustained pain, which also demonstrated significant sensitivity and specificity. Overall, these results provide new insight into the brain mechanisms of sustained pain, and ultimately contribute to the development of clinically useful objective biomarkers of pain.
      번역하기

      Understanding neurobiological mechanisms of pain has enormous implications for basic science and clinical practices. However, the subjectivity and ambiguity of the measurement of pain have hampered its progress. This dissertation presents a series of ...

      Understanding neurobiological mechanisms of pain has enormous implications for basic science and clinical practices. However, the subjectivity and ambiguity of the measurement of pain have hampered its progress. This dissertation presents a series of attempts to develop brain-based biomarkers that can quantitatively and objectively measure subjective pain using functional magnetic resonance imaging (fMRI), with particular focus on the sustained pain which is a hallmark of clinical pain disorders. In Chapter 1, we reviewed the emergence of predictive modeling and graph-theoretical approach from the history of pain research, and highlighted the translational potential of experimentally-induced sustained pain. In Chapter 2 and 3, we introduced the actual application of these approaches based on fMRI data. In the Chapter 2, we used whole-brain functional connectivity to develop a biomarker that can predict ongoing sustained pain induced by orofacial capsaicin. This biomarker not only showed high sensitivity and specificity across multiple capsaicin pain fMRI datasets but also could be generalized onto clinical back pain fMRI datasets as well, suggesting the shared neural mechanisms across sustained experimental and clinical pain. In the Chapter 3, we used graph-theoretical analyses to examine how functional brain architecture was reconfigured over the experience of sustained pain induced by orofacial capsaicin. The characteristic features of dynamic brain reconfiguration were then used to develop biomarkers predictive of sustained pain, which also demonstrated significant sensitivity and specificity. Overall, these results provide new insight into the brain mechanisms of sustained pain, and ultimately contribute to the development of clinically useful objective biomarkers of pain.

      더보기

      국문 초록 (Abstract)

      만성 통증 연구 및 치료는 그 막대한 중요성과 사회적 함의에도 불구하고 측정 대상이 되는 통증 자체의 주관성과 모호함 때문에 많은 어려움이 있어왔다. 본 연구에서는 실험적으로 유발된 지속적 통증과, 임상에서 진단된 만성 통증 질환을 대상으로 뇌 기능 영상을 통해 신경생물학적 기전을 규명하고 통증을 객관적으로 측정할 수 있는 생물학적 표지자를 개발하고자 한다. 1장에서는 통증 연구의 역사적인 흐름에서, 전체 뇌의 분산된 기능을 반영하는 기법으로서의 예측 모델링과 그래프 이론적 접근의 출현을 검토하고, 실험적으로 유도된 만성 통증의 임상적 중개 가능성을 서술한다. 이어지는 2장과 3장에서는 위의 두 가지 방법론의 뇌 기능 영상 데이터에서의 실제적 적용을 다룬다. 2장에서는 전체 뇌의 기능적 연결성을 사용하여 캡사이신에 의해 유도된 지속적인 구강안면 통증을 예측할 수 있는 바이오마커를 개발했다. 이 바이오마커는 여러 캡사이신 통증 데이터셋에 걸쳐 높은 민감도와 특이도를 보여줬을 뿐만 아니라 임상적 허리 통증을 예측하는 데에도 우수한 성능을 나타냈으며, 이는 본 바이오마커가 실험적 및 임상적 통증에 공통적인 신경생물학적 기전을 반영함을 시사한다. 3장에서는 그래프 이론을 사용하여 캡사이신에 의해 유발된 지속적 통증에 따른 기능적 뇌 네트워크의 동적인 재구성을 확인했다. 또한, 통증 변화에 따른 뇌 네트워크의 특징적인 변화의 패턴을 기반으로 지속적 통증의 세기를 예측하는 바이오마커를 개발하였으며 이 바이오마커는 높은 민감도와 특이도를 보여주었다. 본 결과는 실험적 및 임상적 만성 통증의 뇌 메커니즘에 대한 새로운 통찰을 제공하며, 궁극적으로 임상적으로 유용한, 객관적인 통증 바이오마커 개발에 기여할 것으로 기대된다.
      번역하기

      만성 통증 연구 및 치료는 그 막대한 중요성과 사회적 함의에도 불구하고 측정 대상이 되는 통증 자체의 주관성과 모호함 때문에 많은 어려움이 있어왔다. 본 연구에서는 실험적으로 유발된...

      만성 통증 연구 및 치료는 그 막대한 중요성과 사회적 함의에도 불구하고 측정 대상이 되는 통증 자체의 주관성과 모호함 때문에 많은 어려움이 있어왔다. 본 연구에서는 실험적으로 유발된 지속적 통증과, 임상에서 진단된 만성 통증 질환을 대상으로 뇌 기능 영상을 통해 신경생물학적 기전을 규명하고 통증을 객관적으로 측정할 수 있는 생물학적 표지자를 개발하고자 한다. 1장에서는 통증 연구의 역사적인 흐름에서, 전체 뇌의 분산된 기능을 반영하는 기법으로서의 예측 모델링과 그래프 이론적 접근의 출현을 검토하고, 실험적으로 유도된 만성 통증의 임상적 중개 가능성을 서술한다. 이어지는 2장과 3장에서는 위의 두 가지 방법론의 뇌 기능 영상 데이터에서의 실제적 적용을 다룬다. 2장에서는 전체 뇌의 기능적 연결성을 사용하여 캡사이신에 의해 유도된 지속적인 구강안면 통증을 예측할 수 있는 바이오마커를 개발했다. 이 바이오마커는 여러 캡사이신 통증 데이터셋에 걸쳐 높은 민감도와 특이도를 보여줬을 뿐만 아니라 임상적 허리 통증을 예측하는 데에도 우수한 성능을 나타냈으며, 이는 본 바이오마커가 실험적 및 임상적 통증에 공통적인 신경생물학적 기전을 반영함을 시사한다. 3장에서는 그래프 이론을 사용하여 캡사이신에 의해 유발된 지속적 통증에 따른 기능적 뇌 네트워크의 동적인 재구성을 확인했다. 또한, 통증 변화에 따른 뇌 네트워크의 특징적인 변화의 패턴을 기반으로 지속적 통증의 세기를 예측하는 바이오마커를 개발하였으며 이 바이오마커는 높은 민감도와 특이도를 보여주었다. 본 결과는 실험적 및 임상적 만성 통증의 뇌 메커니즘에 대한 새로운 통찰을 제공하며, 궁극적으로 임상적으로 유용한, 객관적인 통증 바이오마커 개발에 기여할 것으로 기대된다.

      더보기

      목차 (Table of Contents)

      • Chapter 1. Introduction 1
      • 1.1. Pain neuroimaging 1
      • 1.1.1. Whole-brain predictive modeling 4
      • 1.1.2. Graph-theoretical analysis 5
      • 1.2. Sustained pain 6
      • Chapter 1. Introduction 1
      • 1.1. Pain neuroimaging 1
      • 1.1.1. Whole-brain predictive modeling 4
      • 1.1.2. Graph-theoretical analysis 5
      • 1.2. Sustained pain 6
      • 1.3. Overview 8
      • Chapter 2. A neuroimaging biomarker for sustained experimental and clinical pain 9
      • 2.1. Introduction 9
      • 2.2. Materials & Methods 12
      • 2.3. Results 24
      • 2.4. Discussion 56
      • 2.5. Supplementary Information 64
      • Chapter 3. Functional brain reconfiguration during sustained pain 114
      • 3.1. Introduction 114
      • 3.2. Materials & Methods 117
      • 3.3. Results 130
      • 3.4. Discussion 155
      • 3.5. Supplementary Information 164
      • Chapter 4. Conclusion 187
      • References 190
      • Korean Abstract 203
      더보기

      참고문헌 (Reference) 논문관계도

      1 Dussor, G. O., Porreca, F., Ossipov, M. H., "Central modulation of pain", 120, 3779-3787, doi:10.1172/JCI43766, 2010

      2 Ingvar, M., "Pain and functional imaging", 354, 1347- 1358, doi:10.1098/rstb.1999.0483, 1999

      3 Newman, M. E., "Assortative mixing in networks", 89, 208701, doi:10.1103/PhysRevLett.89.208701, 2002

      4 Apkarian, A. V., Geha, P. Y, Baliki, M. N., "Towards a theory of chronic pain", 87, 81-97, doi:10.1016/j. pneurobio.2008.09.018, 2009

      5 Beck, A. T., Ward, C. H., Mock, J., Mendelson, M., Erbaugh, J., "An inventory for measuring depression", 561-571, doi:10.1001/archpsyc.1961.01710120031004, 1961

      6 Brodie, E. E., Mitchell, L. A., MacDonald, R. A., "Temperature and the cold pressor test", 5, 233-237, doi:10.1016/j. jpain.2004.03.004, 2004

      7 Iannetti, G. D., Wood, J. N., Salomons, T. V., Liang, M., "The Pain Matrix in Pain-Free Individuals", 73, 755-756, doi:10.1001/jamaneurol.2016.0653, 2016

      8 Albe-Fessard, D., Willis, W. D. Jr., Ralston, H. J., Kruger, L., Berkley, K. J., "Diencephalic mechanisms of pain sensation", 3rd 356, 217-296, doi:10.1016/0165- 0173(85)90013-x (, 1985

      9 Ploner, M., Wiech, K., Tracey, I., "Neurocognitive aspects of pain perception", , 306-313, doi:10.1016/j. tics.2008.05.005, 2008

      10 Bagarinao, E., Mackey, S., Chapin, H., "Real-time fMRI applied to pain management", 520, 174-181, doi:10.1016/j. neulet.2012.02.076, 2012

      1 Dussor, G. O., Porreca, F., Ossipov, M. H., "Central modulation of pain", 120, 3779-3787, doi:10.1172/JCI43766, 2010

      2 Ingvar, M., "Pain and functional imaging", 354, 1347- 1358, doi:10.1098/rstb.1999.0483, 1999

      3 Newman, M. E., "Assortative mixing in networks", 89, 208701, doi:10.1103/PhysRevLett.89.208701, 2002

      4 Apkarian, A. V., Geha, P. Y, Baliki, M. N., "Towards a theory of chronic pain", 87, 81-97, doi:10.1016/j. pneurobio.2008.09.018, 2009

      5 Beck, A. T., Ward, C. H., Mock, J., Mendelson, M., Erbaugh, J., "An inventory for measuring depression", 561-571, doi:10.1001/archpsyc.1961.01710120031004, 1961

      6 Brodie, E. E., Mitchell, L. A., MacDonald, R. A., "Temperature and the cold pressor test", 5, 233-237, doi:10.1016/j. jpain.2004.03.004, 2004

      7 Iannetti, G. D., Wood, J. N., Salomons, T. V., Liang, M., "The Pain Matrix in Pain-Free Individuals", 73, 755-756, doi:10.1001/jamaneurol.2016.0653, 2016

      8 Albe-Fessard, D., Willis, W. D. Jr., Ralston, H. J., Kruger, L., Berkley, K. J., "Diencephalic mechanisms of pain sensation", 3rd 356, 217-296, doi:10.1016/0165- 0173(85)90013-x (, 1985

      9 Ploner, M., Wiech, K., Tracey, I., "Neurocognitive aspects of pain perception", , 306-313, doi:10.1016/j. tics.2008.05.005, 2008

      10 Bagarinao, E., Mackey, S., Chapin, H., "Real-time fMRI applied to pain management", 520, 174-181, doi:10.1016/j. neulet.2012.02.076, 2012

      11 Head, H., Holmes, G., "Sensory disturbances from cerebral lesions", 34, 102-254, 1911

      12 Frackowiak, R. S., Williams, S., Turner, R., Howard, R., Friston, K. J., "Movementrelated effects in fMRI time-series", 35, 346-355, 1996

      13 Tracey, I., "Neuroimaging enters the pain biomarker arena", 13 eabj7358, doi:10.1126/scitranslmed. abj7358 (2021), 2021

      14 Apkarian, A. V., Farmer, M. A., Baliki, M. N., "A dynamic network perspective of chronic pain", 520, 197-203, doi:10.1016/j. neulet.2012.05.001, 2012

      15 Mano, H., Seymour, B., "Pain: a distributed brain information network?", 13, e1002037, doi:10.1371/journal. pbio.1002037, 2015

      16 Newman, M. E., "The structure and function of complex networks", 45, 167- 256, 2003

      17 Cohen, A. L., Schlaggar, B. L., Petersen, S. E., Fair, D. A., Dosenbach, N. U., "A dualnetworks architecture of top-down control", 99-105, doi:10.1016/j. tics.2008.01.001, 2008

      18 Blondel, V. D., Lefebvre, E., Lambiotte, R., Guillaume, J.-L., "Fast unfolding of communities in large networks", P10008, 2008

      19 Chapman, C. R., Gavrin, J., "Suffering: the contributions of persistent pain", 353, 2233-2237, doi:10.1016/S0140-6736(99)01308-2, 1999

      20 Gaskin, D. J., Richard, P., "The economic costs of pain in the United States", 13, 715-724, doi:10.1016/j. jpain.2012.03.009, 2012

      21 Bassett, D. S., Yang, M., Wymbs, N. F., Grafton, S. T., "Learning-induced autonomy of sensorimotor systems", 18, 744-751, doi:10.1038/nn.3993, 2015

      22 Apkarian, A. V., "Pain perception in relation to emotional learning", 18, 464-468, doi:10.1016/j. conb.2008.09.012, 2008

      23 Davis, K. D., Tasker, R. R., Lozano, A. M., Hutchison, W. D., Dostrovsky, J. O., "Painrelated neurons in the human cingulate cortex", 2, 403-405, doi:10.1038/8065, 1999

      24 Iannetti, G. D., Mouraux, A., "The search for pain biomarkers in the human brain", 141, 3290-3307, doi:10.1093/brain/awy281 (, 2018

      25 Becerra, L., Hargreaves, R., Borsook, D., "A role for fMRI in optimizing CNS drug development", 5, 411-424, doi:10.1038/nrd2027, 2006

      26 Chen, J. I., Roy, M., Rainville, P., Piche, M., Peretz, I., "Cerebral and spinal modulation of pain by emotions", 106, 20900-20905, doi:10.1073/pnas.0904706106, 2009

      27 Dimsdale, J. E., Zatzick, D. F., "Cultural variations in response to painful stimuli", 52, 544-557, doi:10.1097/00006842-199009000-00007, 1990

      28 Iannetti, G. D., Mouraux, A., "From the neuromatrix to the pain matrix (and back)", 205, 1-12, doi:10.1007/s00221-010-2340-1, 2010

      29 Eisenberger, N. I., Williams, K. D., Lieberman, M. D., "Does rejection hurt? An FMRI study of social exclusion", 302, 290-292, doi:10.1126/science.1089134, 2003

      30 Chun, M. M., Scheinost, D., Rosenberg, M. D., Finn, E. S., Constable, R. T., "Characterizing Attention with Predictive Network Models", 21, 290-302, doi:10.1016/j. tics.2017.01.011, 2017

      31 Preston, C., Wise, R. G., "What is the value of human FMRI in CNS drug development?", 15, 973-980, doi:10.1016/j. drudis.2010.08.016, 2010

      32 Apkarian, A. V., Baliki, M. N., "Nociception, Pain, Negative Moods, and Behavior Selection", 87, 474-491, doi:10.1016/j. neuron.2015.06.005, 2015

      33 Garcia, J., Rusiniak, K. W., Hankins, W. G., "Behavioral regulation of the milieu interne in man and rat", 185, 824-831, doi:10.1126/science.185.4154.824, 1974

      34 Isensee, O., Kenshalo, D. R. Jr., "Responses of primate SI cortical neurons to noxious stimuli", 50, 1479-1496, doi:10.1152/jn.1983.50.6.1479, 1983

      35 Basbaum, A. I., "Distinct neurochemical features of acute and persistent pain", 96, 7739-7743, doi:10.1073/pnas.96.14.7739, 1999

      36 Jackson, G. D., Zalesky, A., Pedersen, M., Omidvarnia, A., "Multilayer network switching rate predicts brain performance", 115, 13376-13381, doi:10.1073/pnas.1814785115 (, 2018

      37 Moayedi, M., Seminowicz, D. A., "The Dorsolateral Prefrontal Cortex in Acute and Chronic Pain", 18, 1027-1035, doi:10.1016/j. jpain.2017.03.008, 2017

      38 Baars, B. J., "The conscious access hypothesis: origins and recent evidence", 6, 47-52, doi:10.1016/s1364-6613(00)01819-2, 2002

      39 Mantyh, P. W., Tracey, I., "The cerebral signature for pain perception and its modulation", 55, 377-391, doi:10.1016/j. neuron.2007.07.012, 2007

      40 Middleton, F. A., Strick, P. L., "Cerebellar projections to the prefrontal cortex of the primate", 21, 700-712, 2001

      41 Navratilova, E., Porreca, F., Phelps, C. E., "Cognition in the Chronic Pain Experience: Preclinical Insights", 365-376, doi:10.1016/j. tics.2021.01.001, 2021

      42 Dafny, N., Qiao, J. T., Liu, F. Y., "Cerebellar stimulation modulates thalamic noxiousevoked responses", 30, 529-534, doi:10.1016/0361-9230(93)90079-q, 1993

      43 Engel, A. K., Senkowski, D., Hofle, M., "Crossmodal shaping of pain: a multisensory approach to nociception", 319-327, doi:10.1016/j. tics.2014.03.005, 2014

      44 Becerra, L., Schmahmann, J. D., Moulton, E. A., Borsook, D., "The cerebellum and pain: passive integrator or active participator?", 65, 14-27, doi:10.1016/j. brainresrev.2010.05.005, 2010

      45 Chang, L. J., Woo, C. W., Wager, T. D., Lindquist, M. A., "Building better biomarkers: brain models in translational neuroimaging", 20, 365-377, doi:10.1038/nn.4478 (, 2017

      46 Marshall, J., "Sensory disturbances in cortical wounds with special reference to pain", 14, 187, 1951

      47 Farrar, J. T., Tracey, I., Segerdahl, A. R., Okell, T. W., Mezue, M., "The dorsal posterior insula subserves a fundamental role in human pain", 18, 499-500, doi:10.1038/nn.3969 (, 2015

      48 Bar, K. J, Schumann, A., Eisentrager, D., Brunn, F., Beissner, F., "Advances in functional magnetic resonance imaging of the human brainstem", 86, 91-98, doi:10.1016/j. neuroimage.2013.07.081, 2014

      49 Rubinov, M., Sporns, O., "Complex network measures of brain connectivity: uses and interpretations", 52, 1059-1069, doi:10.1016/j. neuroimage.2009.10.003, 2010

      50 Caffo, B. S., Wager, T. D., Lindquist, M. A., Geuter, S., "Modular preprocessing pipelines can reintroduce artifacts into fMRI data", 40, 2358-2376, doi:10.1002/hbm.24528, 2019

      51 Berman, M. G., Wager, T. D., Smith, E. E., Mischel, W., Kross, E., "Social rejection shares somatosensory representations with physical pain", 108, 6270-6275, doi:10.1073/pnas.1102693108, 2011

      52 Buchel, C., Sprenger, C., Horing, B., "The parietal operculum preferentially encodes heat pain and not salience", 17, e3000205, doi:10.1371/journal. pbio.3000205, 2019

      53 Macon, K., Richardson, T., Porter, M. A., Onnela, J. P., Mucha, P. J., "Community structure in time-dependent, multiscale, and multiplex networks", 328, 876-878, doi:10.1126/science.1184819 (2010), 2010

      54 Fischl, B., Greve, D. N., "Accurate and robust brain image alignment using boundarybased registration", 48, 63-72, doi:10.1016/j. neuroimage.2009.06.060, 2009

      55 Bushnell, M. C., Low, L. A., Ceko, M., "Cognitive and emotional control of pain and its disruption in chronic pain", 14, 502-511, doi:10.1038/nrn3516, 2013

      56 Ceko, M., Woo, C. W., Wager, T. D., Lopez-Sola, M., Kragel, P. A., "Common and stimulus-type-specific brain representations of negative affect", 25, 760-770, doi:10.1038/s41593-022-01082-w (2022), 2022

      57 Damasio, A., Tranel, D., Damasio, H., "Persistence of feelings and sentience after bilateral damage of the insula", 23, 833-846, doi:10.1093/cercor/bhs077, 2013

      58 Fransson, P., Thompson, W. H., Schiffler, B., Kastrati, G., Jensen, K. B., "Brain network segregation and integration during painful thermal stimulation", 32, 4039- 4049, doi:10.1093/cercor/bhab464 (, 2022

      59 Bushnell, M. C., Rainville, P., Price, D. D., Duncan, G. H., Carrier, B., "Pain affect encoded in human anterior cingulate but not somatosensory cortex", 277, 968-971, doi:10.1126/science.277.5328.968, 1997

      60 Bassett, D. S., Satterthwaite, T. D., Gold, J. I., Betzel, R. F., "Positive affect, surprise, and fatigue are correlates of network flexibility", 7, 520, doi:10.1038/s41598-017- 00425-z, 2017

      61 Chang, L. J., Wager, T. D., Manuck, S. B., Krishnan, A., Gianaros, P. J., "A Sensitive and Specific Neural Signature for Picture-Induced Negative Affect", 13, e1002180, doi:10.1371/journal. pbio.1002180 (, 2015

      62 Dallel, R., Woda, A., Ngom, P. I., Dubray, C., "A human oral capsaicin pain model to assess topical anesthetic-analgesic drugs", 316, 149-152, doi:10.1016/s0304-3940(01)02401-6, 2001

      63 Diukova, A., Wise, R. G., Mouraux, A., Lee, M. C., Iannetti, G. D., "A multisensory investigation of the functional significance of the pain matrix", 54, 2237- 2249, doi:10.1016/j. neuroimage.2010.09.084, 2011

      64 Apkarian, A. V., Zubieta, J. K., Treede, R. D., Bushnell, M. C., "Human brain mechanisms of pain perception and regulation in health and disease", 9, 463- 484, doi:10.1016/j. ejpain.2004.11.001, 2005

      65 Bingel, U., Wiech, K., Tracey, I., Ploner, M., Lee, M. C., "Flexible cerebral connectivity patterns subserve contextual modulations of pain", 21, 719-726, doi:10.1093/cercor/bhq146, 2011

      66 Baad-Hansen, L., Zhang, Z., Svensson, P., Lu, S., List, T., "Somatosensory profiling of intra-oral capsaicin and menthol in healthy subjects", 121, 29-35, doi:10.1111/eos.12014 (, 2013

      67 Basbaum, A. I., Fields, H. L., "Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry", 7, 309-338, doi:10.1146/annurev. ne.07.030184.001521, 1984

      68 Coghill, R. C., Sang, C. N., Maisog, J. M., Iadarola, M. J., "Pain intensity processing within the human brain: a bilateral, distributed mechanism", 82, 1934-1943, doi:10.1152/jn.1999.82.4.1934, 1999

      69 Buckner, R. L., Yeo, B. T., Choi, E. Y., "The organization of the human striatum estimated by intrinsic functional connectivity", 108, 2242-2263, doi:10.1152/jn.00270.2012, 2012

      70 Bennett, D. L., Tracey, I, Themistocleous, A. C., Segerdahl, A. R., Fido, D., "A brainbased pain facilitation mechanism contributes to painful diabetic polyneuropathy", 141, 357-364, doi:10.1093/brain/awx337 (2018), 2018

      71 Buckner, R. L., Yeo, B. T., Krienen, F. M., Diaz, J. C., Castellanos, A., "The organization of the human cerebellum estimated by intrinsic functional connectivity", 106, 2322-2345, doi:10.1152/jn.00339.2011 (, 2011

      72 Berry, D. N., Simons, C. T., "Assessing regional sensitivity and desensitization to capsaicin among oral cavity mucosae", doi:10.1093/chemse/bjaa033, 2020

      73 Gabrieli, J. D. E., Whitfield-Gabrieli, S., Ghosh, S. S., "Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience", 85, 11-26, doi:10.1016/j. neuron.2014.10.047, 2015

      74 Dougherty, P. M., Zhang, Z. H., Oppenheimer, S. M., "Monkey insular cortex neurons respond to baroreceptive and somatosensory convergent inputs", 94, 351- 360, doi:10.1016/s0306-4522(99)00339-5, 1999

      75 Dum, R. P., Strick, P. L., Levinthal, D. J., "The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys", 29, 14223-14235, doi:10.1523/JNEUROSCI.3398-09.2009, 2009

      76 Buhle, J. T., Woo, C. W., Wager, T. D., Roy, M., "Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain", 13, e1002036, doi:10.1371/journal. pbio.1002036, 2015

      77 Casey, K. L., Minoshima, S., Lorenz, J., "Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation", 126, 1079-1091, 2003

      78 Baars, B. J., "Global workspace theory of consciousness: toward a cognitive neuroscience of human experience", 150, 45-53, doi:10.1016/S0079-6123(05)50004-9, 2005

      79 Iannetti, G. D., Mouraux, A., "Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity", 101, 3258-3269, doi:10.1152/jn.91181.2008, 2009

      80 Ma, Q., "A functional subdivision within the somatosensory system and its implications for pain research", 110, 749-769, doi:10.1016/j. neuron.2021.12.015, 2022

      81 Davis, K. D., Salomons, T. V., Kucyi, A., "Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks", 18692-18697, doi:10.1073/pnas.1312902110, 2013

      82 Davis, K. D., Seminowicz, D. A., "Pain enhances functional connectivity of a brain network evoked by performance of a cognitive task", 97, 3651-3659, doi:10.1152/jn.01210.2006, 2007

      83 Iannetti, G. D., Su, Q., Mouraux, A., Liang, M., "Spatial Patterns of Brain Activity Preferentially Reflecting Transient Pain and Stimulus Intensity", 29, 2211- 2227, doi:10.1093/cercor/bhz026 (, 2019

      84 Isnard, J., Peyron, R., Mazzola, L., Mauguiere, F., "Stimulation of the human cortex and the experience of pain: Wilder Penfield's observations revisited", 135, 631-640, doi:10.1093/brain/awr265 (, 2012

      85 Caffo, B. S., Xu, Y., Nebel, M. B., Lindquist, M. A., "Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach", 101, 531-546, doi:10.1016/j. neuroimage.2014.06.052 (, 2014

      86 Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., Power, J. D., Petersen, S. E., "Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion", 59, 2142-2154, doi:10.1016/j. neuroimage.2011.10.018 (, 2012

      87 Eisenberger, N. I., Lieberman, M. D., "The dorsal anterior cingulate cortex is selective for pain: Results from large-scale reverse inference", 112, 15250- 15255, doi:10.1073/pnas.1515083112 (, 2015

      88 Boldrey, E., Penfield, W., "Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation", 60, 389-443, 1937

      89 Barch, D. M., Lerman-Sinkoff, D. B., "Network community structure alterations in adult schizophrenia: identification and localization of alterations", 10, 96-106, doi:10.1016/j. nicl.2015.11.011, 2016

      90 Clower, D. M., West, R. A., Strick, P. L., Lynch, J. C., "The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum", 21, 6283-6291, 2001

      91 Braga, R. M., Buckner, R. L., "Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity", 95, 457-471 e455, doi:10.1016/j. neuron.2017.06.038, 2017

      92 Knecht, S., Schnitzler, A, Kunesch, E., "Parallel and serial processing of haptic information in man: effects of parietal lesions on sensorimotor hand function", 34, 669-687, doi:10.1016/0028-3932(95)00148-4, 1996

      93 Davis, K. D., Lozano, A. M., Hutchison, W. D., Dostrovsky, J. O., "Altered pain and temperature perception following cingulotomy and capsulotomy in a patient with schizoaffective disorder", 59, 189-199, doi:10.1016/0304-3959(94)90071-X, 1994

      94 Atlas, L. Y., Wager, T. D., Robinson, L. F., "Dynamic functional connectivity using statebased dynamic community structure: method and application to opioid analgesia", 108, 274-291, doi:10.1016/j. neuroimage.2014.12.034, 2015

      95 Bastuji, H., Perchet, C., Magnin, M., Garcia-Larrea, L., Frot, M., "Pain networks from the inside: Spatiotemporal analysis of brain responses leading from nociception to conscious perception", 37, 4301-4315, doi:10.1002/hbm.23310 (, 2016

      96 Atlas, L. Y., Wager, T. D., Rilling, J. K., Leotti, L. A., "Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience", 31, 439-452, doi:10.1523/JNEUROSCI.3420-10.2011, 2011

      97 Han, J., Yoo, Y., Woo, C. W., Wager, T. D., Hong, Y. W., "False-positive neuroimaging: Undisclosed flexibility in testing spatial hypotheses allows presenting anything as a replicated finding", 195, 384-395, doi:10.1016/j. neuroimage.2019.03.070, 2019

      98 Bingel, U., Zunhammer, M., Wager, T. D., Placebo Imaging, C., "Placebo Effects on the Neurologic Pain Signature: A Meta-analysis of Individual Participant Functional Magnetic Resonance Imaging Data", 75, 1321-1330, doi:10.1001/jamaneurol.2018.2017, 2018

      99 Byeon, K., Park, H., Park, B. Y., "FuNP (Fusion of Neuroimaging Preprocessing) Pipelines: A Fully Automated Preprocessing Software for Functional Magnetic Resonance Imaging", 13, 5, doi:10.3389/fninf.2019.00005 (, 2019

      100 Stevenson, R. J., Yeomans, M. R., "Differences in ratings of intensity and pleasantness for the capsaicin burn between chili likers and non-likers; implications for liking development", 18, 471-482, doi:10.1093/chemse/18.5.471, 1993

      101 Apkarian, A. V., Szeverenyi, N. M., Krauss, B. R., Fredrickson, B. E., "Imaging the pain of low back pain: functional magnetic resonance imaging in combination with monitoring subjective pain perception allows the study of clinical pain states", 299, 57- 60, doi:10.1016/s0304-3940(01)01504-x (2001)., 2001

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼