RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Growth, Characterization and Assembly of Lead Chalcogenide Nanosemiconductors for Ionizing Radiation Sensors.

      한글로보기

      https://www.riss.kr/link?id=T16618582

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The demand for precise and efficient nuclear radiation detection has increased dramatically, particularly in numerous scientific disciplines, as well as homeland security and medical imaging applications. Modern methods by which ionizing radiation was sensed has now heavily considered using nano-scale materials for the sake of effective counting. Nanocrystalline (NC), or quantum dot (QD), semiconductors themselves exhibit exploitable properties—such as tunable energy band gap and charge carrier multiplication (multi-exciton generation) which arise due to strong quantum confinement. With this, fabricating a quantum-dot-based semiconductor to operate as a high-performance detector, via a low-cost solution-based manufacturing method, can truly alter the capabilities of radiation detectors. Using this NC approach which primarily focuses on high atomic number and density materials, was investigated as a means to maximize charge creation while minimizing the uncertainty in that conversion, as the approach is based on favorable features of NC materials for their application to the detection of ionizing radiation. The intrinsically high charge mobility combined with high atomic number and density of the lead chalcogenides makes them attractive for sensing applications with highly penetrating quanta, such as x-rays and gamma-rays, as the lead chalcogenide materials possesses an extensive literature of synthetic routes with which one can explore the strong confinement regime in quantum dots. By varying the reaction conditions, NCs of various sizes and shapes were synthesized, and their physical and opto-electric properties were investigated. Drop-, float-, or dip-coating NC dispersions on various metal contacts resulted in close-packed NC assemblies of lead chalcogenides. However, in sensing architectures, the exploitation of various properties for each individual nanocrystallite (NC) is hampered by the need to transport the charge carriers throughout the active volume, a motion that can be retarded by energetic surface barriers typically in the form of insulating oxides. Various synthetic routes are investigated to fabricate lead chalcogenide QDs while the feasibility of utilizing NC materials as a basis for detecting ionizing radiation is also explored. QDs and their assembled structures were carefully investigated through characterization to determine their overall quality. Methods to improve NC interconnectivity were studied and mentioned. The prevention of surface oxidation through the fabrication of NCs was also explored, resulting in chemically and optically stable NCs for at least 1.6 years. Overall, this study focuses on using solution-based methods to fabricate nano-semiconductor nuclear radiation detectors. Various recipes will be presented, as well as the electrical results of developed NC assembly samples, with the focus on improving the charge carrier transport properties of these NC assemblies.
      번역하기

      The demand for precise and efficient nuclear radiation detection has increased dramatically, particularly in numerous scientific disciplines, as well as homeland security and medical imaging applications. Modern methods by which ionizing radiation wa...

      The demand for precise and efficient nuclear radiation detection has increased dramatically, particularly in numerous scientific disciplines, as well as homeland security and medical imaging applications. Modern methods by which ionizing radiation was sensed has now heavily considered using nano-scale materials for the sake of effective counting. Nanocrystalline (NC), or quantum dot (QD), semiconductors themselves exhibit exploitable properties—such as tunable energy band gap and charge carrier multiplication (multi-exciton generation) which arise due to strong quantum confinement. With this, fabricating a quantum-dot-based semiconductor to operate as a high-performance detector, via a low-cost solution-based manufacturing method, can truly alter the capabilities of radiation detectors. Using this NC approach which primarily focuses on high atomic number and density materials, was investigated as a means to maximize charge creation while minimizing the uncertainty in that conversion, as the approach is based on favorable features of NC materials for their application to the detection of ionizing radiation. The intrinsically high charge mobility combined with high atomic number and density of the lead chalcogenides makes them attractive for sensing applications with highly penetrating quanta, such as x-rays and gamma-rays, as the lead chalcogenide materials possesses an extensive literature of synthetic routes with which one can explore the strong confinement regime in quantum dots. By varying the reaction conditions, NCs of various sizes and shapes were synthesized, and their physical and opto-electric properties were investigated. Drop-, float-, or dip-coating NC dispersions on various metal contacts resulted in close-packed NC assemblies of lead chalcogenides. However, in sensing architectures, the exploitation of various properties for each individual nanocrystallite (NC) is hampered by the need to transport the charge carriers throughout the active volume, a motion that can be retarded by energetic surface barriers typically in the form of insulating oxides. Various synthetic routes are investigated to fabricate lead chalcogenide QDs while the feasibility of utilizing NC materials as a basis for detecting ionizing radiation is also explored. QDs and their assembled structures were carefully investigated through characterization to determine their overall quality. Methods to improve NC interconnectivity were studied and mentioned. The prevention of surface oxidation through the fabrication of NCs was also explored, resulting in chemically and optically stable NCs for at least 1.6 years. Overall, this study focuses on using solution-based methods to fabricate nano-semiconductor nuclear radiation detectors. Various recipes will be presented, as well as the electrical results of developed NC assembly samples, with the focus on improving the charge carrier transport properties of these NC assemblies.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼