1 J. H. Lee, "Toward high-performance, memory-efficient, and fast reinforcement learning-Lessons from decision neuroscience" 4 (4): eaav2975-, 2019
2 I. Momennejad, "The successor representation in human reinforcement learning" 1 (1): 680-692, 2017
3 S. J. Gershman, "The successor representation : Its computational logic and neural substrates" 38 (38): 7193-7200, 2018
4 J. P. O’Doherty, "The structure of reinforcement-learning mechanisms in the human brain" 1 : 94-100, 2014
5 K. L. Stachenfeld, "The hippocampus as a predictive map" 20 (20): 1643-1653, 2017
6 G. Farquhar, "Self-Consistent Models and Values" 34 : 1111-1125, 2021
7 R. S. Sutton, "Reinforcement learning: An introduction" MIT press 2018
8 J. X. Wang, "Prefrontal cortex as a meta-reinforcement learning system" 21 (21): 860-868, 2018
9 E. M. Russek, "Predictive representations can link model-based reinforcement learning to model-free mechanisms" 13 (13): e1005768-, 2017
10 D. Hassabis, "Neuroscience-inspired artificial intelligence" 95 (95): 245-258, 2017
1 J. H. Lee, "Toward high-performance, memory-efficient, and fast reinforcement learning-Lessons from decision neuroscience" 4 (4): eaav2975-, 2019
2 I. Momennejad, "The successor representation in human reinforcement learning" 1 (1): 680-692, 2017
3 S. J. Gershman, "The successor representation : Its computational logic and neural substrates" 38 (38): 7193-7200, 2018
4 J. P. O’Doherty, "The structure of reinforcement-learning mechanisms in the human brain" 1 : 94-100, 2014
5 K. L. Stachenfeld, "The hippocampus as a predictive map" 20 (20): 1643-1653, 2017
6 G. Farquhar, "Self-Consistent Models and Values" 34 : 1111-1125, 2021
7 R. S. Sutton, "Reinforcement learning: An introduction" MIT press 2018
8 J. X. Wang, "Prefrontal cortex as a meta-reinforcement learning system" 21 (21): 860-868, 2018
9 E. M. Russek, "Predictive representations can link model-based reinforcement learning to model-free mechanisms" 13 (13): e1005768-, 2017
10 D. Hassabis, "Neuroscience-inspired artificial intelligence" 95 (95): 245-258, 2017
11 S. W. Lee, "Neural computations underlying arbitration between model-based and model-free learning" 81 (81): 687-699, 2014
12 D. Silver, "Mastering the game of go without human knowledge" 550 (550): 354-359, 2017
13 D. Silver, "Mastering the game of go with deep neural networks and tree search" 529 (529): 484-489, 2016
14 J. Schrittwieser, "Mastering atari, go, chess and shogi by planning with a learned model" 588 (588): 604-609, 2020
15 J. X. Wang, "Learning to reinforcement learn"
16 R. S. Sutton, "Learning to predict by the methods of temporal differences" 3 (3): 9-44, 1988
17 W. Dabney, "Implicit quantile networks for distributional reinforcement learning" 1096-1105, 2018
18 S. -H. Kim, "Evaluating a successor representation-based reinforcement learning algorithm in the 2-stage Markov decision task" 910-913, 2021
19 R. S. Sutton, "Dyna, an integrated architecture for learning, planning, and reacting" 2 (2): 160-163, 1991
20 E. C. Tolman, "Cognitive maps in rats and men" 55 (55): 189-, 1948