RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      Waviness 가 있는 볼베어링으로 지지된 회전계의 동특성 해석 (Ⅱ) -안정성 해석-

      한글로보기

      https://www.riss.kr/link?id=A75901826

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This research presents an analytical model to investigate the stability due to the ball bearing waviness in a<br/>
      rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the rolling elements as the rotor rotates, and it can be calculated by differentiating the nonlinear contact forces. The linearized equations of motion can be represented as a parametrically excited system in the form of Mathieu's equation, because the stiffness coefficients have time-varying components due to the waviness. Their solution can be assumed as a Fourier series expansion so that thc equations of motion can be rewritten as the simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving the Hill's infinite detenninan: of these algebraic equations. The validity of this research is proved by comparing the stability chart with the time responses of the vibration model suggested by prior researches. This research shows that the waviness in the rolling clements of a ball bearing generates the time-varying component of the stitTness coeOlcient, whose fretjuency is called the frequency of the parametric excitation. It also shows that the instability takes plaee from the positions in which the ratio of the natural frequency to the frequency of the parametrie excitation corresponds to i/2 (i=I,2,3..).<br/>
      번역하기

      This research presents an analytical model to investigate the stability due to the ball bearing waviness in a<br/> rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the ro...

      This research presents an analytical model to investigate the stability due to the ball bearing waviness in a<br/>
      rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the rolling elements as the rotor rotates, and it can be calculated by differentiating the nonlinear contact forces. The linearized equations of motion can be represented as a parametrically excited system in the form of Mathieu's equation, because the stiffness coefficients have time-varying components due to the waviness. Their solution can be assumed as a Fourier series expansion so that thc equations of motion can be rewritten as the simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving the Hill's infinite detenninan: of these algebraic equations. The validity of this research is proved by comparing the stability chart with the time responses of the vibration model suggested by prior researches. This research shows that the waviness in the rolling clements of a ball bearing generates the time-varying component of the stitTness coeOlcient, whose fretjuency is called the frequency of the parametric excitation. It also shows that the instability takes plaee from the positions in which the ratio of the natural frequency to the frequency of the parametrie excitation corresponds to i/2 (i=I,2,3..).<br/>

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1.서론
      • 2.해석방법
      • 3.결과 및 고찰
      • 4.결론
      • Abstract
      • 1.서론
      • 2.해석방법
      • 3.결과 및 고찰
      • 4.결론
      • 참고문헌
      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.27 0.27 0.25
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.24 0.23 0.506 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼