본 논문은 조명 변화, 표정 변화, 부분적인 오클루전이 있는 얼굴 영상에 강인하고 적은 메모리양과 계산량을 갖는 효율적인 얼굴 인식 방법을 제안한다. SKKUface(Sungkyunkwan University face)라 명...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A82294390
2001
Korean
569
구)KCI등재(통합)
학술저널
192-200(9쪽)
0
상세조회0
다운로드국문 초록 (Abstract)
본 논문은 조명 변화, 표정 변화, 부분적인 오클루전이 있는 얼굴 영상에 강인하고 적은 메모리양과 계산량을 갖는 효율적인 얼굴 인식 방법을 제안한다. SKKUface(Sungkyunkwan University face)라 명...
본 논문은 조명 변화, 표정 변화, 부분적인 오클루전이 있는 얼굴 영상에 강인하고 적은 메모리양과 계산량을 갖는 효율적인 얼굴 인식 방법을 제안한다. SKKUface(Sungkyunkwan University face)라 명명한 이 방법은 먼저 훈련 영상에 PCA(principal component analysis)를 적용하여 차원을 줄일 때 구해지는 특징 벡터 공간에서 조명 변화, 얼굴 표정 변화 등에 해당되는 공간이 최대한 제외된 새로운 특징 벡터 공간을 생성한다. 이러한 특징 벡터 공간은 얼굴의 고유특징만을 주로 포함하는 벡터 공간이므로 이러한 벡터 공간에 Fisher linear discriminant를 적용하면 클래스간의 더욱 효과적인 분리가 이루어져 인식률을 획기적으로 향상시킨다. 또한, SKKUface 방법은 클래스간 분산(between-class covariance) 행렬과 클래스내 분산(within-class covariance) 행렬을 계산할 때 문제가 되는 메모리양과 계산 시간을 획기적으로 줄이는 방법을 제안하여 적용하였다. 제안된 SKKUface 방법의 얼굴 인식 성능을 평가하기 위하여 YALE, SKKU, ORL(Olivetti Research Laboratory) 얼굴 데이타베이스를 가지고 기존의 얼굴 인식 방법으로 널리 알려진 Eigenface 방법, Fisherface 방법과 함께 인식률을 비교 평가하였다. 실험 결과, 제안된 SKKUface 방법이 조명 변화, 부분적인 오클루전이 있는 얼굴 영상에 대해서 Eigenface 방법과 Fisherface 방법에 비해 인식률이 상당히 우수함을 알 수 있었다.
다국어 초록 (Multilingual Abstract)
This research feature a new method for automatic face recognition robust to variations in lighting, facial expression and eyewear. The new algorithm named SKKUfaces (Sungkyunkwan University faces) employs PCA (Principal Component analysis) and FLD (Fi...
This research feature a new method for automatic face recognition robust to variations in lighting, facial expression and eyewear. The new algorithm named SKKUfaces (Sungkyunkwan University faces) employs PCA (Principal Component analysis) and FLD (Fisher's Linear Discriminant) in series similarly to Fisherfaces. The fundamental difference is that SKKUfaces effectively eliminates, in the reduced PCA subspace, portions of the subspace that are responsible for variations in lighting and facial expression and then applies FLD to the resulting subspace. This results in superb discriminating power for pattern classification and excellent recognition accuracy. We also propose an efficient method to compute the between-class scatter and within-class scatter matrices for FLD analysis. We have evaluated the performance of SKKUfaces using YALE, SKKU, and ORL(Olivetti Research Laboratory) facial database. Initial experimental results show that the SKKUfaces method is computationally efficient and achieves much better recognition accuracy than Fisherface method especially for facial images with variations in lighting and eyewear.
목차 (Table of Contents)
객체지향 프로그램의 화이트박스와 블랙박스 재사용성 측정 메트릭스