RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Modeling Complex Pharmacokinetics of Long‐Acting Injectable Products Using Convolution‐Based Models With Nonparametric Input Functions

      한글로보기

      https://www.riss.kr/link?id=O111280047

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      The interest in the development and the therapeutic use of long‐acting injectable (LAI) products for chronic or long‐term treatments has grown exponentially. The complexity and the multiphase drug release process represent serious issues for an effective modeling of the PK properties of LAI products. The objective of this article is to show how convolution‐based models with piecewise‐linear approximation of the nonlinear drug release function can provide an enhanced modeling tool for (1) characterizing the complex PK profiles of LAI formulations with completely different drug release properties, and (2) addressing key questions supporting the optimal development of LAI products by simulating the PK time course resulting from different dosing strategies. Convolution‐based modeling and simulation were implemented in NONMEM, and 3 case studies were presented to assess the performances of this new modeling approach using PK data of LAI products developed using different technologies and administered using different routes: microsphere technology and aqueous nanosuspension intramuscularly administered and biodegradable polymer subcutaneously administered. The performance of the convolution‐based modeling approach was compared with the performance of conventional parametric models using a reference data set on theophylline. The results of the comparison indicated that the nonparametric input function provided a more accurate description of the data either in terms of global measure of goodness of fit (ie, Akaike information criterion and Bayesian information criterion) or in terms of performance of the fitted model (ie, the percent prediction error on Cmax and AUC0‐t).
      번역하기

      The interest in the development and the therapeutic use of long‐acting injectable (LAI) products for chronic or long‐term treatments has grown exponentially. The complexity and the multiphase drug release process represent serious issues for an ef...

      The interest in the development and the therapeutic use of long‐acting injectable (LAI) products for chronic or long‐term treatments has grown exponentially. The complexity and the multiphase drug release process represent serious issues for an effective modeling of the PK properties of LAI products. The objective of this article is to show how convolution‐based models with piecewise‐linear approximation of the nonlinear drug release function can provide an enhanced modeling tool for (1) characterizing the complex PK profiles of LAI formulations with completely different drug release properties, and (2) addressing key questions supporting the optimal development of LAI products by simulating the PK time course resulting from different dosing strategies. Convolution‐based modeling and simulation were implemented in NONMEM, and 3 case studies were presented to assess the performances of this new modeling approach using PK data of LAI products developed using different technologies and administered using different routes: microsphere technology and aqueous nanosuspension intramuscularly administered and biodegradable polymer subcutaneously administered. The performance of the convolution‐based modeling approach was compared with the performance of conventional parametric models using a reference data set on theophylline. The results of the comparison indicated that the nonparametric input function provided a more accurate description of the data either in terms of global measure of goodness of fit (ie, Akaike information criterion and Bayesian information criterion) or in terms of performance of the fitted model (ie, the percent prediction error on Cmax and AUC0‐t).

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼