RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      차량부품 내구평가 데이터를 활용한 딥러닝 기반 다중 클래스 이상탐지 모델 구현

      한글로보기

      https://www.riss.kr/link?id=A109545907

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The automotive industry's increasing demand for reliability and durability has led to rigorous testing processes, including endurance tests where components are operated until failure. Traditional anomaly detection methods based on signal thresholds face challenges: high thresholds can cause secondary failures or distort cycle times, while low thresholds trigger premature interventions. To overcome these limitations, this study employs a dual LSTM-AE (Long Short-Term Memory Autoencoder) model, which excels at capturing time-series data patterns and detecting anomalies through reconstruction errors. By utilizing two LSTM-AE models, this approach allows for a more precise classification of operational states into normal, caution, and critical zones. Using the Power Take-off Unit (PTU) as a case study, the dual LSTM-AE model provides actionable insights to prevent secondary failures. The paper discusses the test environment, data preprocessing, model design, and anomaly detection results.
      번역하기

      The automotive industry's increasing demand for reliability and durability has led to rigorous testing processes, including endurance tests where components are operated until failure. Traditional anomaly detection methods based on signal thresholds f...

      The automotive industry's increasing demand for reliability and durability has led to rigorous testing processes, including endurance tests where components are operated until failure. Traditional anomaly detection methods based on signal thresholds face challenges: high thresholds can cause secondary failures or distort cycle times, while low thresholds trigger premature interventions. To overcome these limitations, this study employs a dual LSTM-AE (Long Short-Term Memory Autoencoder) model, which excels at capturing time-series data patterns and detecting anomalies through reconstruction errors. By utilizing two LSTM-AE models, this approach allows for a more precise classification of operational states into normal, caution, and critical zones. Using the Power Take-off Unit (PTU) as a case study, the dual LSTM-AE model provides actionable insights to prevent secondary failures. The paper discusses the test environment, data preprocessing, model design, and anomaly detection results.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼