RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Flywheel energy storage system with a permanent magnet bearing and a pair of hybrid ceramic ball bearings

      한글로보기

      https://www.riss.kr/link?id=A103788693

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A flywheel energy storage system (FESS) with a permanent magnet bearing (PMB) and a pair of hybrid ceramic ball bearings is developed. A flexibility design is established for the flywheel rotor system. The PMB is located at the top of the flywheel to...

      A flywheel energy storage system (FESS) with a permanent magnet bearing (PMB) and a pair of hybrid ceramic ball bearings is developed.

      A flexibility design is established for the flywheel rotor system. The PMB is located at the top of the flywheel to apply axialattraction force on the flywheel rotor, reduce the load on the bottom rolling bearing, and decrease the friction power loss. The magneticforce of the PMB is analyzed through finite element method, and the force with the air gap of the PMB is verified experimentally. Asqueeze film damper (SFD) is introduced to support the bottom rolling bearing, suppress lateral vibration, and enhance the stability of theflywheel rotor system. A dynamic model of FESS is established through transfer matrix method, Jones-Harris rolling bearing theory, anda finite length bearing dynamic model for SFD, which is verified by measuring the amplitude-frequency response. The effect of SFDradial clearance and unbalanced mass distribution on the dynamics of FESS is discussed. A spin-down test for the FESS prototype isconducted in a moderate vacuum. Results show that the hybrid bearing and flexibility design for the rotor system allow for the use of asmall rolling bearing to reduce the power loss of FESS caused by friction. The developed FESS is simple in structure, stable withoutactive control, low in cost, and convenient in maintenance.

      더보기

      참고문헌 (Reference)

      1 J A Kirk, "The open core composite flywheel" 3 : 1748-1753, 1997

      2 H Wang, "The dynamic analysis of an energy storage flywheel system with hybrid bearing support" ASME 131 (131): 0510061-0510069, 2009

      3 K Nagashima, "Superconducting magnetic bearing for a flywheel energy storage system using superconducting coils and bulk superconductors" 469 (469): 1244-1249, 2009

      4 Y H Han, "Study of superconductor bearings for a 35kWh superconductor flywheel energy storage system" 483 : 156-161, 2012

      5 H K Jang, "Study of damping in 5kWh superconductor flywheel energy storage system using a piezoelectric actuator" 475 : 46-50, 2012

      6 A Kenny, "Single plane radial, magnetic bearings biased with poles containing permanent magnets" ASME 125 : 178-185, 2003

      7 Tang Chang-Liang, "Rotor dynamics analysis and experiment study of the flywheel spin test system" 대한기계학회 26 (26): 2669-2677, 2012

      8 JS Rao, "Rotor dynamics" Wiley Eastern 1983

      9 TA Harris, "Rolling bearing analysis" John Wiley & Sons 1984

      10 N Koshizuka, "R&D of superconducting bearing technologies for flywheel energy storage systems" 445 : 1103-1108, 2006

      1 J A Kirk, "The open core composite flywheel" 3 : 1748-1753, 1997

      2 H Wang, "The dynamic analysis of an energy storage flywheel system with hybrid bearing support" ASME 131 (131): 0510061-0510069, 2009

      3 K Nagashima, "Superconducting magnetic bearing for a flywheel energy storage system using superconducting coils and bulk superconductors" 469 (469): 1244-1249, 2009

      4 Y H Han, "Study of superconductor bearings for a 35kWh superconductor flywheel energy storage system" 483 : 156-161, 2012

      5 H K Jang, "Study of damping in 5kWh superconductor flywheel energy storage system using a piezoelectric actuator" 475 : 46-50, 2012

      6 A Kenny, "Single plane radial, magnetic bearings biased with poles containing permanent magnets" ASME 125 : 178-185, 2003

      7 Tang Chang-Liang, "Rotor dynamics analysis and experiment study of the flywheel spin test system" 대한기계학회 26 (26): 2669-2677, 2012

      8 JS Rao, "Rotor dynamics" Wiley Eastern 1983

      9 TA Harris, "Rolling bearing analysis" John Wiley & Sons 1984

      10 N Koshizuka, "R&D of superconducting bearing technologies for flywheel energy storage systems" 445 : 1103-1108, 2006

      11 H Lee, "Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system" 494 : 246-249, 2013

      12 JY Shen, "Optimal control of a flywheel energy storage system with a radial flux hybrid magnetic bearing" 339 : 189-210, 2002

      13 J H Choi, "Operating range evaluation of double-side permanent magnet synchronous motor/generator for flywheel energy storage system" 49 (49): 4076-4079, 2013

      14 XJ Dai, "On the vibration of rotorbearing system with squeeze film damper in an energy storage flywheel" 43 : 2525-2540, 2001

      15 RL Fittro, "Neural network controller design for a magnetic bearing flywheel energy storage system" 4 : 37-41, 1992

      16 SooJeon, "Model Validation and Controller Design for Vibration Suppression of Flexible Rotor Using AMB" 대한기계학회 16 (16): 3-1593, 2002

      17 G G Sotelo, "Magnetic bearing sets for a flywheel system" 17 (17): 2150-2153, 2007

      18 L. Bakay, "Losses in an optimized 8-pole radial AMB for long term flywheel energy storage" IEEE 1-6, 2009

      19 S Jiang, "Investigation of the high speed rolling bearing temperature rise with oil-air lubrication" ASME 133 (133): 1-9, 2011

      20 H Mitsuda, "Improvement of energy storage flywheel system with SMB and PMB and its performances" 19 (19): 2091-2094, 2009

      21 K Nagaya, "High temperature superconducting levitation flywheel system and its control" 181 (181): 12-17, 2007

      22 J R Hull, "Flywheel energy storage using superconducting magnetic bearings" 2 (2): 449-455, 1994

      23 B Kim, "Experiment and analysis for a small-sized flywheel energy storage system with a high-temperature superconductor bearing" 19 (19): 217-, 2006

      24 G Genta, "Dynamics of rotating systems" Springer 2005

      25 S Jiang, "Dynamic design of a high-speed motorized spindle-bearing system" ASME 132 : 034501-, 2010

      26 Rainer Leuschke, "Disturbance attenuation using a DC motor for radial force actuation in a rotordynamic system" ASME 129 : 804-812, 2007

      27 L Hawkins, "Development of an AMB energy storage flywheel for commercial application" 261-265, 2005

      28 Z Xia, "Design of superconducting magnetic bearings with high levitating force for flywheel energy storage systems" 5 (5): 622-625, 1995

      29 K Murakami, "Design of an energy storage flywheel system using permanent magnet bearing (PMB) and superconducting magnetic bearing (SMB)" 47 : 272-277, 2007

      30 B Paden, "Design formulas for permanent-magnet bearings, Journal of Mechanical Design" 125 : 734-738, 2003

      31 A C Day, "Design and testing of the HTS bearing for a 10kWh flywheel system" 15 (15): 2002838-2002841,

      32 YL Li, "Design and testing of a permanent magnetic bearing for an energy storage flywheel" 48 : 1268-1271, 2008

      33 P. Imoberdorf, "Combined radial-axial magnetic bearing for A 1 kW, 500,000 rpm permanent magnet machine" 1434-1440, 2007

      34 T Ichihara, "Application of superconducting magnetic bearings to a 10 kWh-class flywheel energy storage system" 15 (15): 2245-2248, 2005

      35 LA Hawkins, "Application of permanent magnet bias magnetic bearings to an energy storage flywheel" 1-15, 1999

      36 R de Andrade, "A superconducting high-speed flywheel energy storage system" 408 : 930-931, 2004

      37 M Siebert, "A passive magnetic bearing flywheel" SAE 1 : 125-132, 2001

      38 JC Fang, "A new structure for permanent-magnet-biased axial hybrid magnetic bearings" 45 : 5319-5325, 2009

      39 V Tamisier, "A new anti-vibration algorithm for active magnetic bearings application" 1 : 168-173, 2002

      40 R F Thelen, "A 2 MW flywheel for hybrid locomotive power" 5 : 3231-3235, 2003

      41 F N Werfel, "250 kW flywheel with HTS magnetic bearing for industrial use" IOP 97 (97): 1-8, 2008

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼