RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Coupled dynamics in soil : experimental and numerical studies of energy, momentum and mass transfer

      한글로보기

      https://www.riss.kr/link?id=T13291804

      • 저자
      • 발행사항

        Berlin ; New York : Springer, ©2013

      • 학위논문사항

        Thesis (Ph. D.)--University of Twente

      • 발행연도

        2013

      • 작성언어

        영어

      • 주제어
      • DDC

        631.432 판사항(22)

      • 발행국(도시)

        독일

      • 형태사항

        xv, 164 p. : ill. ; 24 cm.

      • 일반주기명

        "Doctoral thesis accepted by University of Twente, The Netherlands."
        Includes bibliographical references.
        General Introduction -- Diurnal Pattern of Coupled Moisture and Heat Transport Process -- Application of Diurnal Soil Water Dynamics in Determining Effective Precipitation -- Two-Phase Mass and Heat Flow Model -- How Airflow Affects Soil Water Dynamics -- Impact of Model Physics on Retrieving Soil Moisture and Soil Temperature -- Concluding Remarks.
        General Introduction -- Diurnal Pattern of Coupled Moisture and Heat Transport Process -- Application of Diurnal Soil Water Dynamics in Determining Effective Precipitation -- Two-Phase Mass and Heat Flow Model.- How Airflow Affects Soil Water Dynamics -- Impact of Model Physics on Retrieving Soil Moisture and Soil Temperature -- Concluding Remarks.

      • 소장기관
        • 국립중앙도서관 국립중앙도서관 우편복사 서비스
        • 서울대학교 중앙도서관 소장기관정보
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      목차 (Table of Contents)

      • CONTENTS
      • 1 General Introduction = 1
      • 1.1 Scientific Background = 1
      • 1.1.1 Soil Moisture = 1
      • 1.1.2 Land Surface Models and Data Assimilation System = 2
      • CONTENTS
      • 1 General Introduction = 1
      • 1.1 Scientific Background = 1
      • 1.1.1 Soil Moisture = 1
      • 1.1.2 Land Surface Models and Data Assimilation System = 2
      • 1.1.3 A Brief History of Hydrological Data Assimilation = 3
      • 1.2 Problem Statement = 4
      • 1.2.1 Enhanced Vapor Transport = 5
      • 1.2.2 LSMs Performance = 6
      • 1.2.3 Problem Definition = 8
      • 1.3 Statement of Objectives = 8
      • 1.4 The Proposed Procedure = 9
      • 1.5 Structure of the Thesis = 10
      • References = 10
      • 2 Diurnal Pattern of Coupled Moisture and Heat Transport Process = 17
      • 2.1 Introduction = 17
      • 2.2 Materials and Methods = 19
      • 2.2.1 In Situ Setup = 19
      • 2.2.2 Field Data = 20
      • 2.2.3 Model Description = 20
      • 2.2.4 Soil Characteristics Data = 22
      • 2.2.5 Initial and Boundary Conditions = 24
      • 2.3 Simulation Results = 24
      • 2.4 Discussion = 27
      • 2.4.1 Temperature and Temperature Gradients Fields = 28
      • 2.4.2 Non-isothermal Flux Fields = 29
      • 2.4.3 Matric Potential and Its Gradient Field = 32
      • 2.4.4 Isothermal Flux Fields = 34
      • 2.4.5 Soil Water Dynamics = 35
      • 2.5 Brief Summary = 36
      • References = 37
      • 3 Application of Diurnal Soil Water Dynamics in Determining Effective Precipitation = 41
      • 3.1 Introduction = 41
      • 3.2 Materials and Methods = 43
      • 3.2.1 Study Site Description = 43
      • 3.2.2 Experimental Design and Data Collection = 44
      • 3.3 Soil Water Balance Model = 45
      • 3.3.1 Model Description = 45
      • 3.3.2 Material Properties = 45
      • 3.3.3 Initial and Boundary Conditions = 48
      • 3.4 Results and Discussion = 49
      • 3.4.1 Model Verification = 49
      • 3.4.2 Determination of the Drying Front = 51
      • 3.4.3 Determination of Effective Infiltration = 56
      • 3.5 Brief Summary = 57
      • References = 58
      • 4 Two-Phase Mass and Heat Flow Model = 61
      • 4.1 Introduction = 61
      • 4.2 Model Description = 63
      • 4.2.1 Governing Equations = 64
      • 4.2.2 Constitutive Equations = 69
      • 4.2.3 Numerical Approach = 76
      • 4.3 Numerical Model Discussion = 78
      • 4.3.1 Air Phase Transport Part = 78
      • 4.3.2 Simultaneous Mass and Heat Transport Part = 79
      • 4.4 Model Verification = 84
      • 4.4.1 Case of TV86 = 84
      • 4.4.2 Case of Milly(1982) = 86
      • 4.5 Numerical Analysis = 88
      • 4.5.1 Influence of Airflow in Milly's Case = 88
      • 4.5.2 Influence of Heat Flow in TV86's Case = 90
      • 4.6 Brief Summary = 93
      • References = 93
      • 5 How Airflow Affects Soil Water Dynamics = 99
      • 5.1 Introduction = 99
      • 5.2 Field Application = 100
      • 5.2.1 Boundary Conditions = 101
      • 5.2.2 Meteorological Forcing Data = 101
      • 5.2.3 Model Validation = 103
      • 5.2.4 Comparisons with Evaporation Measurement = 105
      • 5.3 Results and Analysis = 107
      • 5.3.1 Advective Effect on Evaporation = 107
      • 5.3.2 Driving Forces Considering Airflow = 108
      • 5.3.3 Comparison of Driving Forces and Conductivities = 110
      • 5.4 Brief Summary = 117
      • References = 119
      • 6 Impact of Model Physics on Retrieving Soil Moisture and Soil Temperature = 123
      • 6.1 Introduction = 123
      • 6.1.1 Reviews of Previous Work = 123
      • 6.1.2 Motivation = 124
      • 6.1.3 Focus of Chapter = 125
      • 6.2 Methodologies = 125
      • 6.2.1 Model Formulations = 125
      • 6.2.2 DM and DMV = 130
      • 6.2.3 Ensemble Transformation Kalman Filter(ETKF) = 132
      • 6.3 Data Assimilation Setup = 133
      • 6.3.1 Field Data = 134
      • 6.3.2 Model Calibration = 134
      • 6.3.3 Filter Calibration = 138
      • 6.4 Results and Analysis = 143
      • 6.4.1 Effect of Temporal Observation Interval = 143
      • 6.4.2 Effect of Surface Temperature Observation = 149
      • 6.4.3 Effect of Assimilation with Soil Moisture Only = 151
      • 6.5 Brief Summary = 152
      • References = 153
      • 7 Concluding Remarks = 159
      • 7.1 Results = 159
      • 7.2 Limitations = 161
      • 7.3 Discussion and Future Work = 162
      • References = 163
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼