RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      Bundle System in the Online Food Delivery Platform

      한글로보기

      https://www.riss.kr/link?id=A109277004

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Purpose: Online food delivery platforms face challenges to operational efficiency due to increasing demand, a shortage of drivers, and the constraint of a one-order-at-a-time delivery policy. It is imperative to find solutions to address the inefficiencies in the food delivery industry. Bundling multiple orders can help resolve these issues, but it requires complex computations due to the exponential increase in possible order combinations. Research design, data and methodology: This study proposes three bundle delivery systems—static, dynamic, and hybrid—utilizing a machine learning-based classification model to reduce the number of order combinations for efficient bundle computation. The proposed systems are analyzed through simulations using market data from South Korea's online food delivery platforms. Results: Our findings indicate that implementing bundle systems extends service coverage to more customers, increases average driver earnings, and maintains lead times comparable to standalone deliveries. Additionally, the platform experiences higher service completion rates and increased profitability. Conclusions: This suggests that bundle systems are cost-effective and beneficial for all stakeholders in online food delivery platforms, effectively addressing the inefficiencies in the industry.
      번역하기

      Purpose: Online food delivery platforms face challenges to operational efficiency due to increasing demand, a shortage of drivers, and the constraint of a one-order-at-a-time delivery policy. It is imperative to find solutions to address the inefficie...

      Purpose: Online food delivery platforms face challenges to operational efficiency due to increasing demand, a shortage of drivers, and the constraint of a one-order-at-a-time delivery policy. It is imperative to find solutions to address the inefficiencies in the food delivery industry. Bundling multiple orders can help resolve these issues, but it requires complex computations due to the exponential increase in possible order combinations. Research design, data and methodology: This study proposes three bundle delivery systems—static, dynamic, and hybrid—utilizing a machine learning-based classification model to reduce the number of order combinations for efficient bundle computation. The proposed systems are analyzed through simulations using market data from South Korea's online food delivery platforms. Results: Our findings indicate that implementing bundle systems extends service coverage to more customers, increases average driver earnings, and maintains lead times comparable to standalone deliveries. Additionally, the platform experiences higher service completion rates and increased profitability. Conclusions: This suggests that bundle systems are cost-effective and beneficial for all stakeholders in online food delivery platforms, effectively addressing the inefficiencies in the industry.

      더보기

      목차 (Table of Contents)

      • 1. Introduction
      • 2. Related Works
      • 3. Bundle Construction and Selection System
      • 4. System Improvement
      • 5. Experimental Results
      • 1. Introduction
      • 2. Related Works
      • 3. Bundle Construction and Selection System
      • 4. System Improvement
      • 5. Experimental Results
      • 6. Conclusion
      • References
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼