RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      Distribution of Air Tickets through Online Platform Recommendation Algorithms

      한글로보기

      https://www.riss.kr/link?id=A109277000

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Purpose: The purpose of this study is to collect and analyze a large amount of data from online ticket distribution platforms that offer multiple airlines and different routes so that they can improve their ticket distribution marketing strategies and provide services that are more suitable for consumer's needs. The results of this study will help airlines improve the quality of their online platform services to provide more benefits and convenience by providing access to multiple airlines and routes around the world on one platform. Research design, data and methodology: For the study, 200 people completed the survey between May 1 and June 15, 2024, of which 191 copies were used in the study. Results: The hypothesis testing results of this study showed that among the components of the recommendation algorithm, decision comport, novelty, and evoked interest recurrence had a positive effect on perceived recommendation quality, but curiosity did not have a positive effect on recommendation quality. The perceived recommendation quality of the online platform positively influenced recommendation satisfaction, and the higher the perceived recommendation quality, the higher the intention to continue the relationship. Finally, higher recommendation satisfaction was associated with higher relationship continuation intention. Conclusion: it's important to continue researching online ticketing platforms. Online platforms will also need to be systems that use technology and data analytics to provide a better user experience and more benefits.
      번역하기

      Purpose: The purpose of this study is to collect and analyze a large amount of data from online ticket distribution platforms that offer multiple airlines and different routes so that they can improve their ticket distribution marketing strategies and...

      Purpose: The purpose of this study is to collect and analyze a large amount of data from online ticket distribution platforms that offer multiple airlines and different routes so that they can improve their ticket distribution marketing strategies and provide services that are more suitable for consumer's needs. The results of this study will help airlines improve the quality of their online platform services to provide more benefits and convenience by providing access to multiple airlines and routes around the world on one platform. Research design, data and methodology: For the study, 200 people completed the survey between May 1 and June 15, 2024, of which 191 copies were used in the study. Results: The hypothesis testing results of this study showed that among the components of the recommendation algorithm, decision comport, novelty, and evoked interest recurrence had a positive effect on perceived recommendation quality, but curiosity did not have a positive effect on recommendation quality. The perceived recommendation quality of the online platform positively influenced recommendation satisfaction, and the higher the perceived recommendation quality, the higher the intention to continue the relationship. Finally, higher recommendation satisfaction was associated with higher relationship continuation intention. Conclusion: it's important to continue researching online ticketing platforms. Online platforms will also need to be systems that use technology and data analytics to provide a better user experience and more benefits.

      더보기

      목차 (Table of Contents)

      • 1. Introduction
      • 2. Theoretical Background
      • 3. Research Methodology
      • 4. Results
      • 5. Conclusion
      • 1. Introduction
      • 2. Theoretical Background
      • 3. Research Methodology
      • 4. Results
      • 5. Conclusion
      • References
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼