Although many kinds of stereo matching method have been developed in the field of computer vision and photogrammetry, wrong matches are not easy to avoid. This paper presents a new method to reduce wrong matches after matching, and experimental result...
Although many kinds of stereo matching method have been developed in the field of computer vision and photogrammetry, wrong matches are not easy to avoid. This paper presents a new method to reduce wrong matches after matching, and experimental results are reported. The main idea is to analyze the histogram of the image attribute differences between each pair of image patches matched. Typical image attributes of image patch are the mean and the standard deviation of gray value for each image patch, but there could be other kinds of image attributes. Another idea is to check relative position among potential matches. This paper proposes to use Gaussian blunder filter to detect the suspicious pair of candidate match in relative position among neighboring candidate matches. If the suspicious candidate matches in image attribute difference or relative position are suppressed, then many wrong matches are removed, but minimizing the suppression of good matches. The proposed method is easy to implement, and also has potential to be applied as post processing after image matching for many kinds of matching methods such as area based matching, feature matching, relaxation matching, dynamic programming, and multi-channel image matching. Results show that the proposed method produces fewer wrong matches than before.