RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      중간복잡도 지구시스템모델 LOVECLIM을 이용한 과거 6천년 기후 변화 모의 = Simulation of Past 6000-Year Climate by Using the Earth System Model of Intermediate Complexity LOVECLIM

      한글로보기

      https://www.riss.kr/link?id=A106108974

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study introduces the overall characteristics of LOVECLIM version 1.3, the earth system model of intermediate complexity (EMIC), including the installation and operation processes by conducting two kinds of past climate simulation. First climate s...

      This study introduces the overall characteristics of LOVECLIM version 1.3, the earth system model of intermediate complexity (EMIC), including the installation and operation processes by conducting two kinds of past climate simulation. First climate simulation is the equilibrium experiment during the mid-Holocene (6,000 BP), when orbital parameters were different compared to those at present. The overall accuracy of simulated global atmospheric fields by LOVECLIM is relatively lower than that in Coupled Model Intercomparison Project phase 5 (CMIP5) and Paleoclimate modelling Intercomparison Project phase 3 (PMIP3) simulations.
      However, surface temperature over the globe, the 800 hPa meridional wind over the mid-latitude coastal region, and the 200 hPa zonal wind from LOVECLIM show similar spatial distribution to those multi-model mean of CMIP5/PMIP3 climate models. Second one is the transient climate experiment from mid-Holocene to present. LOVECLIM well captures the major differences in surface temperature between preindustrial and mid-Holocene simulations by CMIP5/ PMIP3 multi-model mean, even though it was performed with short integration time (i.e., about four days in a single CPU environment). In this way, although the earth system model of intermediate complexity has a limit due to its relatively low accuracy, it can be a very useful tool in the specific research area such as paleoclimate.

      더보기

      참고문헌 (Reference)

      1 Megumi O. Chikamoto, "Variability in North Pacific intermediate and deep water ventilation during Heinrich events in two coupled climate models" Elsevier BV 61-64 : 114-126, 2012

      2 Bretagnon, P., "Theory for the motion of all the planets - The VSOP82 solution" 114 : 278-288, 1982

      3 I. Nikolova, "The last interglacial (Eemian) climate simulated by LOVECLIM and CCSM3" Copernicus GmbH 9 (9): 1789-1806, 2013

      4 Masa Kageyama, "The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan" Copernicus GmbH 11 (11): 1033-1057, 2018

      5 Z. Liu, "The Holocene temperature conundrum" Proceedings of the National Academy of Sciences 111 (111): E3501-E3505, 2014

      6 R. S. Smith, "The FAMOUS climate model (versions XFXWB and XFHCC): description update to version XDBUA" Copernicus GmbH 5 (5): 269-276, 2012

      7 Yin, Q., "The Eurasian ice sheet reinforces the East Asian summer monsoon during the interglacial 500 000 years ago" 4 : 79-90, 2008

      8 Taylor, K. E., "Summarizing multiple aspects of model performance in a single diagram" 106 : 7183-7192, 2001

      9 Huybrechts, P., "Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles" 21 : 203-231, 2002

      10 Braconnot, P., "Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features" 3 : 261-277, 2007

      1 Megumi O. Chikamoto, "Variability in North Pacific intermediate and deep water ventilation during Heinrich events in two coupled climate models" Elsevier BV 61-64 : 114-126, 2012

      2 Bretagnon, P., "Theory for the motion of all the planets - The VSOP82 solution" 114 : 278-288, 1982

      3 I. Nikolova, "The last interglacial (Eemian) climate simulated by LOVECLIM and CCSM3" Copernicus GmbH 9 (9): 1789-1806, 2013

      4 Masa Kageyama, "The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan" Copernicus GmbH 11 (11): 1033-1057, 2018

      5 Z. Liu, "The Holocene temperature conundrum" Proceedings of the National Academy of Sciences 111 (111): E3501-E3505, 2014

      6 R. S. Smith, "The FAMOUS climate model (versions XFXWB and XFHCC): description update to version XDBUA" Copernicus GmbH 5 (5): 269-276, 2012

      7 Yin, Q., "The Eurasian ice sheet reinforces the East Asian summer monsoon during the interglacial 500 000 years ago" 4 : 79-90, 2008

      8 Taylor, K. E., "Summarizing multiple aspects of model performance in a single diagram" 106 : 7183-7192, 2001

      9 Huybrechts, P., "Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles" 21 : 203-231, 2002

      10 Braconnot, P., "Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features" 3 : 261-277, 2007

      11 Thibaut Caley, "Orbital Asian summer monsoon dynamics revealed using an isotope-enabled global climate model" Springer Science and Business Media LLC 5 (5): 2014

      12 Axel Timmermann, "Modeling Obliquity and CO2 Effects on Southern Hemisphere Climate during the Past 408 ka" American Meteorological Society 27 (27): 1863-1875, 2014

      13 M. E. Weber, "Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation" Springer Science and Business Media LLC 510 (510): 134-138, 2014

      14 Wanner, H., "Mid- to Late Holocene climate change: an overview" 27 : 1791-1828, 2008

      15 Menviel, L., "Meridional reorganizations of marine and terrestrial productivity during Heinrich events" 23 : PA1203-, 2008

      16 Berger, A. L., "Long-term variations of daily insolation and quaternary climatic changes" 35 : 2362-2367, 1978

      17 Chou, C., "Linearization of a longwave radiation scheme for intermediate tropical atmospheric models" 101 : 15129-15145, 1996

      18 Gent, P. R., "Isopycnal Mixing in Ocean Circulation Models" 20 : 150-155, 1990

      19 Goosse, H., "Importance of ice-ocean interactions for the global ocean circulation: A model study" 104 : 23337-23355, 1999

      20 S. Sundaram, "Impact of ice sheet induced North Atlantic oscillation on East Asian summer monsoon during an interglacial 500,000 years ago" Springer Science and Business Media LLC 39 (39): 1093-1105, 2012

      21 Jacob, R., "ICCS 2001" Springer-Verlag 175-184, 2001

      22 Kohfeld, K. E., "How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets" 19 : 321-346, 2000

      23 M. Eby, "Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity" Copernicus GmbH 9 (9): 1111-1140, 2013

      24 Hewitt, C. D., "GCM Simulations of the Climate of 6 kyr BP: Mean Changes and Interdecadal Variability" 9 : 3505-3529, 1996

      25 N. Fischer, "Evolution of the seasonal temperature cycle in a transient Holocene simulation: orbital forcing and sea-ice" Copernicus GmbH 7 (7): 1139-1148, 2011

      26 Braconnot, P., "Evaluation of climate models using palaeoclimatic data" 2 : 417-424, 2012

      27 Claussen, M., "Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models" 18 : 579-586, 2002

      28 Opsteegh, J. D., "ECBILT: a dynamic alternative to mixed boundary conditions in ocean models" 50 : 348-367, 1998

      29 Mellor, G. L., "Development of a turbulence closure model for geophysical fluid problems" 20 : 851-875, 1982

      30 H. Goosse, "Description of the Earth system model of intermediate complexity LOVECLIM version 1.2" Copernicus GmbH 3 (3): 603-633, 2010

      31 Renssen, H., "Coupled climate model simulation of Holocene cooling events:oceanic feedback amplifies solar forcing" 2 : 79-90, 2006

      32 IPCC, "Climate Change 2013 - The Physical Science Basis" Cambridge University Press 1535-, 2014

      33 Lorenz, S. J., "Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: method and application for the Holocene" 23 : 727-743, 2004

      34 Brovkin, V., "A continuous climate-vegetation classification for use in climate-biosphere studies" 101 : 251-261, 1997

      35 Held, I. M., "A Two-Level Primitive Equation Atmospheric Model Designed for Climatic Sensitivity Experiments" 35 : 206-229, 1978

      36 S. Funder, "A 10,000-Year Record of Arctic Ocean Sea-Ice Variability--View from the Beach" American Association for the Advancement of Science (AAAS) 333 (333): 747-750, 2011

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2009-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2008-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2006-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.64 0.64 0.57
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.55 0.55 0.864 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼