최근 딥 러닝은 다양한 분야에서 가장 중요하고 강력한 주제이다. 딥러닝은 이미지 분류에서 뛰어난 성능을 보였으며, 이후 컴퓨터 비전의 이지미에서 객체 감지 및 시맨틱 분할에도 적용되...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=T15687590
서울 : 서울대학교 대학원, 2020
학위논문(박사) -- 서울대학교 대학원 , 협동과정 계산과학전공 , 2020. 8
2020
영어
004 판사항(22)
서울
딥러닝을 이용한 화재 감지 및 화재 이미지 시맨틱 분할
vi, 72장 : 삽화, 표 ; 26 cm
참고문헌 수록
I804:11032-000000161834
0
상세조회0
다운로드국문 초록 (Abstract)
최근 딥 러닝은 다양한 분야에서 가장 중요하고 강력한 주제이다. 딥러닝은 이미지 분류에서 뛰어난 성능을 보였으며, 이후 컴퓨터 비전의 이지미에서 객체 감지 및 시맨틱 분할에도 적용되...
최근 딥 러닝은 다양한 분야에서 가장 중요하고 강력한 주제이다. 딥러닝은 이미지 분류에서 뛰어난 성능을 보였으며, 이후 컴퓨터 비전의 이지미에서 객체 감지 및 시맨틱 분할에도 적용되었다. 본 논문에서는 뛰어난 성능을 가진 딥 러닝을 사용하여 화재 이미지 감지 및 분할 작업에 적합한 네트워크를 제안한다. 또한 딥러닝 압축 기법을 사용하여 화재 이미지 분할 딥러닝 모델에 적용하여 소규모 네트워크를 제안하였고 이를 임베디드 장치에 적용했다. 여러가지 광범위한 실험을 통해 화재감지와 화재 이미지 분할에서 기존의 기법보다 좋다는 점을 보였다.
다국어 초록 (Multilingual Abstract)
Recently, deep learning has become the most important and powerful topic in various research fields. It has shown excellent performance in image classification and has been applied to the fields of object detection and semantic image segmentation of c...
Recently, deep learning has become the most important and powerful topic in various research fields. It has shown excellent performance in image classification and has been applied to the fields of object detection and semantic image segmentation of computer vision. In this thesis, we proposed deep neural networks suitable for fire image detection and segmentation tasks with excellent performance. In addition, we proposed a small-sized network for fire image segmentation based on squeezed deep-learning techniques and applied it to an embedded device. Several extensive experiments are presented to demonstrate its better performance compared with the existing methods for fire detection and image segmentation.
목차 (Table of Contents)