RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Electromigration behaviors of Sn58%Bi solder containing Ag-coated MWCNTs with OSP surface finished PCB

      한글로보기

      https://www.riss.kr/link?id=A107455006

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>We investigated the effect of Ag-coated multi-walled carbon nanotubes (Ag-MWCNT) on the microstructures and electromigration behaviors of a Sn58%Bi solder and organic solderability preservative ...

      <P><B>Abstract</B></P> <P>We investigated the effect of Ag-coated multi-walled carbon nanotubes (Ag-MWCNT) on the microstructures and electromigration behaviors of a Sn58%Bi solder and organic solderability preservative (OSP) surface finished on the FR-4 printed circuit board (PCB) joint under a current stress of 3000 A/cm<SUP>2</SUP> at 100 °C. Electromigration of Ag-MWCNT Sn58%Bi composite solder was investigated by daisy-chain test-kit. Reaction layers formed at the anode side and cathode side of the Sn58%Bi solder joints consisted of three microstructures; Bi-rich layer, Sn-rich layer, and intermetallic compounds (IMCs, Cu<SUB>6</SUB>Sn<SUB>5</SUB> and Cu<SUB>3</SUB>Sn). The Bi-rich layer was mainly formed at the anode side in the couple of the Sn58%Bi solder joint with various times of applying current stress. The Bi-rich layer of the Ag-MWCNT Sn58%Bi composite solder joint was approximately 2 times thinner than that of the Sn58%Bi solder joint because the Ag-MWCNT acts as a diffusion barrier. Also, the Cu<SUB>6</SUB>Sn<SUB>5</SUB> and Cu<SUB>3</SUB>Sn IMCs that formed at the interface between the Ag-MWCNT Sn58%Bi composite solder joints were thinner than those of the Sn58%Bi solder joints. The time to failure (TTF) was longest at the 0.05% Ag-MWCNT Sn58%Bi composite solder joint. Therefore, Ag MWCNT is expected to improve the reliability of electromigration in the Sn58%Bi composite solder joint.</P> <P><B>Highlights</B></P> <P> <UL> <LI> The electromigration of the Ag-MWCNT Sn58%Bi composite solders were investigated. </LI> <LI> Ag-coated MWCNTs were widely distributed in the Sn58%Bi solder joint. </LI> <LI> MWCNT suppressed growths of Cu-Sn IMCs and Bi-rich layer under current stress. </LI> <LI> TTF value of the 0.05 wt% Ag-MWCNT Sn58%Bi composite solder joint was the longest. </LI> </UL> </P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼