Modern rocking and stepping cores have been known as the efficient self‐centering earthquake‐resisting systems (SC‐ERSs). The current article proposes an approximate equivalent linear (EL) model for rapid estimation of the SC‐ERS displacement....
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=O120239452
2019년
-
1541-7794
1541-7808
SCIE;SCOPUS
학술저널
n/a-n/a [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
Modern rocking and stepping cores have been known as the efficient self‐centering earthquake‐resisting systems (SC‐ERSs). The current article proposes an approximate equivalent linear (EL) model for rapid estimation of the SC‐ERS displacement....
Modern rocking and stepping cores have been known as the efficient self‐centering earthquake‐resisting systems (SC‐ERSs). The current article proposes an approximate equivalent linear (EL) model for rapid estimation of the SC‐ERS displacement. An equivalent damping ratio and effective stiffness are formulated for flag‐shaped hysteresis of a fully SC‐ERS. The approximate EL model is first established using secant stiffness and Jacobsen's damping model. Nonlinear response history analyses are carried out to compare exact and approximated peak displacements. Findings reveal that EL analysis of the SC‐ERS based on Jacobsen's damping leads to underestimation of the maximum inelastic displacement. Accordingly, a new optimal damping formula is proposed using a genetic algorithm and nonlinear regression analyses. The improved EL model is validated by practical examples, and the results show acceptable accuracy in design‐level displacement estimation.
Effects of hysteretic damping on the seismic performance of tuned mass dampers
Enhancing the seismic performance of mid‐rise wood‐frame buildings with rigid spine columns
Fuzzy‐sliding mode control of nonlinear smart base‐isolated building under earthquake excitation