This paper presents a study on estimating the number of bridging fibers in multidirectional glass/epoxy composite laminates using acoustic emission signals. DCB test was conducted for analyzing the fracture behavior of multidirectional composite lamin...
This paper presents a study on estimating the number of bridging fibers in multidirectional glass/epoxy composite laminates using acoustic emission signals. DCB test was conducted for analyzing the fracture behavior of multidirectional composite laminates, and acoustic emission sensor was utilized to measure the elastic wave generated upon specimen fracture. For unidirectional composite laminates, the initial number of bridging fibers was estimated through reference paper and fiber volume fraction. To estimate the initial number of bridging fibers for multidirectional composite laminates, the relative ratio of acoustic emission signals was utilized. The estimated number of bridging fibers was applied to FEM, and the results of FEM showed good agreement with experimental results.