RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Modeling Sustainable Mineral Supply Pathways to Meet Clean Energy Demand.

      한글로보기

      https://www.riss.kr/link?id=T17249886

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      소속기관이 구독 중이 아닌 경우 오후 4시부터 익일 오전 9시까지 원문보기가 가능합니다.

      부가정보

      다국어 초록 (Multilingual Abstract)

      The adoption of renewable energy technologies hinges on the availability of many critical minerals. To meet the large demand for critical minerals, it is vital to scale up mineral supply in an environmentally and socially responsible way while maintaining low materials costs for key technologies. To guide policy and technology innovation that meets this objective, we need robust approaches for evaluating the availability and costs of materials. However, traditional approaches for assessing material availability or ‘criticality’ do not incorporate price feedback or a structural understanding of how material supply evolves. In this thesis, I build a model that simulates metal demand, mine opening and operation decisions, and mineral reserve development while incorporating price feedback. This model is used to evaluate how factors such as the rate of demand growth, materials substitutability and recycling rates impact materials prices and availability in the long term. The model is then applied to data on real mining projects for two key battery materials: nickel and lithium. Model simulations analyze supply pathways till 2040 to identify strategies that reduce the risk of materials supply constraints impacting clean energy technology deployment.Results demonstrate that a combination of high mining productivity, development of material substitutes and large recycling rates reduce the prevalence of availability risks from ~90% to just under 2% for materials experiencing high demand. In the nickel case, results show that environmental regulation can reduce impacts such as supply-chain emissions by 50% but lead to a 2x increase in nickel prices with only 70% of baseline nickel demand being satisfied. However, if regulations are combined with innovation that lowers processing costs and market coordination that reduces project development timelines and risks, over 90% of the demand is met without price increases. Similarly in the lithium case, reducing mine development timelines from 8 years to 6 years can increase the percentage of demand satisfied from 82% to 92% by moderating supply shortages and lithium prices.
      번역하기

      The adoption of renewable energy technologies hinges on the availability of many critical minerals. To meet the large demand for critical minerals, it is vital to scale up mineral supply in an environmentally and socially responsible way while mainta...

      The adoption of renewable energy technologies hinges on the availability of many critical minerals. To meet the large demand for critical minerals, it is vital to scale up mineral supply in an environmentally and socially responsible way while maintaining low materials costs for key technologies. To guide policy and technology innovation that meets this objective, we need robust approaches for evaluating the availability and costs of materials. However, traditional approaches for assessing material availability or ‘criticality’ do not incorporate price feedback or a structural understanding of how material supply evolves. In this thesis, I build a model that simulates metal demand, mine opening and operation decisions, and mineral reserve development while incorporating price feedback. This model is used to evaluate how factors such as the rate of demand growth, materials substitutability and recycling rates impact materials prices and availability in the long term. The model is then applied to data on real mining projects for two key battery materials: nickel and lithium. Model simulations analyze supply pathways till 2040 to identify strategies that reduce the risk of materials supply constraints impacting clean energy technology deployment.Results demonstrate that a combination of high mining productivity, development of material substitutes and large recycling rates reduce the prevalence of availability risks from ~90% to just under 2% for materials experiencing high demand. In the nickel case, results show that environmental regulation can reduce impacts such as supply-chain emissions by 50% but lead to a 2x increase in nickel prices with only 70% of baseline nickel demand being satisfied. However, if regulations are combined with innovation that lowers processing costs and market coordination that reduces project development timelines and risks, over 90% of the demand is met without price increases. Similarly in the lithium case, reducing mine development timelines from 8 years to 6 years can increase the percentage of demand satisfied from 82% to 92% by moderating supply shortages and lithium prices.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼