RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      A hybrid artificial bee colony algorithm for scheduling of digital microfluidic biochip operations

      한글로보기

      https://www.riss.kr/link?id=O112791418

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2021년

      • 작성언어

        -

      • Print ISSN

        1532-0626

      • Online ISSN

        1532-0634

      • 등재정보

        SCOPUS;SCIE

      • 자료형태

        학술저널

      • 수록면

        n/a-n/a   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Digital microfluidic biochips (DMFBs) are designed to efficiently carry out biochemical and biomedical analysis in a miniaturized way. DMFBs offer various advantages over traditional laboratory techniques and reduces cost, and increases automation and software programmability. Scheduling of microfluidic operations is the first and essential step in the fluidic‐level synthesis of DMFBs, while the other two are the module placement and droplet routing. Scheduling DMFB operations is a multiconstrained optimization problem, and the particular decision problem is NP‐complete. We propose a hybrid artificial bee colony (ABC) algorithm using generalized N‐point crossover (GNX) based scheduling of DMFB operations. Proposed ABC‐GNX perturbs through search space, evaluates various schedules possible, and returns the best schedule among the evaluated schedules. Simple list scheduling based heuristic algorithms can explore a single schedule based on the sequence generated by the priority function. Iterative improvement based search algorithms explore the search space and evaluate more schedules, but the proposed ABC‐GNX algorithm produces optimal solutions in shorter execution times. Simulation results show that the proposed ABC‐GNX produces a higher number of optimal completion times and faster execution times than existing algorithms.
      번역하기

      Digital microfluidic biochips (DMFBs) are designed to efficiently carry out biochemical and biomedical analysis in a miniaturized way. DMFBs offer various advantages over traditional laboratory techniques and reduces cost, and increases automation and...

      Digital microfluidic biochips (DMFBs) are designed to efficiently carry out biochemical and biomedical analysis in a miniaturized way. DMFBs offer various advantages over traditional laboratory techniques and reduces cost, and increases automation and software programmability. Scheduling of microfluidic operations is the first and essential step in the fluidic‐level synthesis of DMFBs, while the other two are the module placement and droplet routing. Scheduling DMFB operations is a multiconstrained optimization problem, and the particular decision problem is NP‐complete. We propose a hybrid artificial bee colony (ABC) algorithm using generalized N‐point crossover (GNX) based scheduling of DMFB operations. Proposed ABC‐GNX perturbs through search space, evaluates various schedules possible, and returns the best schedule among the evaluated schedules. Simple list scheduling based heuristic algorithms can explore a single schedule based on the sequence generated by the priority function. Iterative improvement based search algorithms explore the search space and evaluate more schedules, but the proposed ABC‐GNX algorithm produces optimal solutions in shorter execution times. Simulation results show that the proposed ABC‐GNX produces a higher number of optimal completion times and faster execution times than existing algorithms.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼